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Disclaimer

These lecture notes were originally written to help the authors consolidate in a ”stupid-proof”
manner the content of the fascinating but very challenging Neuromorphic Engineering 1 (NE1)
course. They are also meant to help other students of the current or following years to digest
the content of the NE1 lectures, to prepare for the exam and, hopefully, better appreciate the
subtleties of the field. They are almost exclusively based on the content taught during Fall 2021
by Prof. Shi-Chii Liu, Prof. Tobi Delbruck Prof. Giacomo Indiveri at ETHZ. We do not claim
originality nor completeness. The containing information is thus freely gathered and often
copied word-by-word from the lecture materials or the ”Analog VLSI” textbook 1 written by the
previously mentioned professors and others (we generally refer to this as the ”Textbook”). These
lecture notes also reproduce content from other sources such as books, blogs, papers, videos etc...
We tried to always cite our references when they did not come directly from the Textbook or
Lecture Notes.

Organisation

The content is organised similarly to the Fall 2021 course schedule, thought it is not exactly the
same. We chose to separate lecture 2 and 3 into two distinct chapters: Transistor Physics and
Transistor Operation. This structure, similar to the Textbook, felt more natural and clearer. We
also grouped both Photosensor and Photoreceptor lectures. The chapters are best read in order,
as much of the content from a given chapter builds on the content from previous chapters. Each
chapter contains the following:

• Short introduction about the objectives of the lecture, and some contextualization of the
topic into the field of Neuromorphic Engineering and beyond.

• List of all topics previously covered that should be understood in order to properly digest
the content of the chapter.

• Content of the chapter, organized, to the best of our capability, in a logical manner (some-
times not exactly matching the lecture structure).

• Lab Summary and takeaways.

• List of all concepts to know for the exam. These are often (though not exclusively) taken
from the ”Study Winter Sheet”2.

Additionally, we added the following extra chapters for reference:

• Chapter 0: Stupid-Proof explanations of fundamental Electrical Engineering / Physics /
Neuroscience for the uninitiated. Warning: This chapter may contain approximations and
inaccuracies.

• Circuit recap - a revision sheet for the most important circuits, their function, equations
and diagram.

• Advice for exam preparation.

• Important constants (It is being said that Tobi likes to ask about these in the exam!)

1https://mitpress.mit.edu/books/analog-vlsi
2This is a revision sheet available on OLAT that should guide revision. However, one should note that many

topics mentioned in this study sheet were not covered during Fall 2021, and that several important things that we
believe should be known are not mentioned in the sheet. We also included it in the Appendix for reference.
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Author Contribution

The project of writing these lecture notes emerged from discussions about the challenging NE1
course between Lioba Schürmann and Yassine Taoudi Benchekroun in early December 2021.
Though our original ambition was to better prepare for the exam, it quickly became a project
with bigger purpose: building a digestible guide to all present and future students of the chal-
lenging NE1 course, and Neuromorphic Engineering as a field. This shift of purpose is a result
of the strong interest we feel towards this fascinating field of research - and it was particularly
emphasized when Wencan Huang and Pietro Bonazzi joined us in early January, as they shared
our enthusiasm for the project. Pietro and Wencan joining us truly gave another breath to this
project.

We now all envision this as an open source project and very much look forward to adding
contribution from students. We invite all readers to point us to the details we may have omitted,
to the elements we may have described in inadequate fashion, or anything that could improve
the overall quality of this humble work. It will be our honour to receive your contribution and
suggestions and add you to our list of contributors.

The individual contribution of authors is as follows:

• Organization, coordination and structuring:

– Yassine Taoudi Benchekroun

• Chapter Authorship:

Some chapters were written by Yassine, others by Lioba. We are choosing not disclose
which ones we wrote to avoid being purposely asked in the oral exam about chapters
we did not write :)

• Lab takeaways:

– Wencan Huang: Odd-numbered labs.

– Pietro Bonazzi: Even-numbered labs.

• Editing:

– All others contributed to editing and reviewing each other’s part. Wencan Huang was
particularly helpful in helping with the device physics and transistor operation sections,
which were the most challenging to write of the whole document.

Contact

If you:

• Would like to contribute to the writing of these lecture notes,

• Spot an error or inaccuracy in the writing of these lecture notes,

• Have any questions, comments or complaints about the lecture notes,

Please feel free to raise an issue on the Github repository or to contact one of the authors directly
at: ybenchekroun@outlook.com.
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0 Fundamentals

0.1 Basics of Electronics

In this section, we’ll have a look at fundamental concepts in electronics. We’ll also point you to
the right references to understand the concept if our explanations are not enough. I believe the
best way to grasp these challenging concepts is through water analogies: as we see water every
day (as opposed to electrons), it is a lot easier to understand elementary fluid dynamics concepts
than elementary electricity concepts. Fortunately, whoever created this world loved the concept
of Fractals and self-similar patterns, so it’s very easy 3 to make accurate electricity analogies with
fluids. Because this course goes in depth into electronics, it is assumed that all these concepts are
already fairly familiar to the student. We have chosen to cover it just as a reminder or merely
a pointer to what one should know before starting the course. If one is not fully comfortably
with these concepts, time should first be spent understanding them before going further into the
course. It is not needed to enter into deep theory, but one should be comfortable enough with the
conceptual behaviour in order to understand the rest of the course.

0.1.1 Fluid Model: The Key to Understanding Electronics.

This section is largely inspired by Carver Mead’s Analog VLSI textbook, which I cannot recom-
mend enough.

Figure 1: Hydraulic analogy of electronic (or neural) circuit. The power supply is a reservoir of
water at potention Vdd. The reference potential is sea level, corresponding to ground of electrical
circuits. The water level in the tank corresponds to the output voltage. The tank can be filled
by opening the valve SW1 or emptied by opening valve SW2 - the valves can be compared to
switches in electrical circuit. Adapted from Carver Mead Analog VLSI textbook

We are able to use fluid analogies to describe electrical dynamics because the fundamental
component of electrical circuit (the charged particle - be it ions or electrons) is present in sufficient
number that they cannot be accounted for individually - similarly to fluid dynamics where we
cannot model at the scale of the individual fluid molecule. The quantity of water in figure 1
is analogous to the quantity of electrical charge Q. There is an underlying granularity to these
quantities: water is made up of water molecules, charge in a neuron is made up of ions (more on
that later) and charge in a transistor is made up of electrons. In all cases, we can discuss the
quantity in terms of either the number of elementary particles or a more convenient macroscopic
unit.

In electronics, the flow of the fundamental particle is called the electrical current. When
speaking of fluids dynamics, gravity is a critical force that will impact much of the behaviour
of this fluid - in electronics, the analogous gravitational ”potential” is called voltage. In figure
1, it corresponds to the height at which the water stands compared to the reference point: sea
level. It is quite straightforward to understand from this point of view that, exactly as the water

3Honestly it’s almost scary how similar it is, you’d believe it’s all the same thing. This makes me thing of a
slightly unrelated essay which thinks about a somewhat related epistemological problem: https://en.wikipedia.
org/wiki/The_Unreasonable_Effectiveness_of_Mathematics_in_the_Natural_Sciences
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which is up in the reservoir is drawn to the ground (but doesn’t necessarily reach if the valves
are closed), electrical charge at a given potential is attracted to the electrical ground (but doesn’t
necessarily reach if switches are ”opened” i.e. not allowing electrons to flow). This is what
potential difference/voltage represents. This leads to the following observation, which makes up
for most of what needs to be understood about fundamental electricity behaviour: a potential
difference in charge drives a current flow from a higher potential point to a lower potential point,
and it flows relative to the extent by which we let it flow: how conductive (or resistive) the path
between the high and low potential points is. This is what makes up for Ohm’s law, where Current
= Potential Difference / Resistance - we’ll get to this again later. Resistance/Conductivity in this
analogy corresponds to the diameter and material used in the pipes linking the reservoir to the
sea - the larger the diameter and the smoother the material of the piper, the easier water can flow,
the opposite also holds.

It is interesting to note that we can measure the height of water from any reference point
we choose. There is however one particular advantage to choosing ”sea level” as the reference
potential: the height will always be positive or zero, thereby making calculations easier. In
electrical circuits, this point of reference is called ground, and it is at 0 Volts.

You might wonder what happens when we run out of water in the reservoir. In fluid dynamics
we’d need a pump (and thus some energy) to bring back water to the top. This is somewhat
similar in electrical systems, which typically use an electrochemical process (such as in batteries)
to keep on bringing electrical charge into the ”reservoir”.4

Now that this has been introduced, we can look in a bit more details into each of the concepts
that should be understood, and keep on going back to water analogies to make things clear. Let’s
start with the fundamental electrical component: electrical charge.

0.1.2 Charge

This is the water molecule in the hydraulic analogy: the fundamental component which behaviour
we describe. In fact, we never really describe the behaviour of the individual component, but
rather the behaviour of the aggregate of individual components. Electric charge is the physical
property of matter that causes it to experience a force when placed in an electromagnetic field.
Think of a charge in an electromagnetic field as you think of some matter in a gravitational field
- it is subject to forces because it has a mass. Electrical charge is subject to a force because it
is not ”neutral”. Electric charge can be positive or negative (commonly carried by protons and
electrons respectively). A somewhat fundamental electrical charge can also be an ion rather than
electron or proton. An ion is an atom which has lost or gained one electron through some chemical
process - as it has lost a charged particle, it therefore becomes charged itself, either positively or
negatively. Alike charges repel each other and unlike charges attract each other. An object with
an absence of net charge is referred to as neutral. We define charge with the symbol Q and with
the units of Coulombs. An electron has, by convention, a charge of 1.6 · 10−19 Coulombs.

0.1.3 Electric Field

An electric field is the physical field that surrounds electrically-charged particles and exerts force
on all other charged particles in the field, either attracting or repelling them. By convention, the
electric field vector points from positive to negative. Electric field also refers to the physical field
for a system of charged particles. It’s conceptually a bit similar to Newton’s gravitational law,
where all matter possessing a mass exerts a force on other masses, depending on the distance that
separates them (and the Gravitational Constant). Understanding electric field is important to
understand the physics behind transistors, and it actually is not so obvious to grasp. It would
take me quite some time to explain it well, as it is not a concept that the water analogy can
explain easily - I thus recommend having a look at the Khan Academy 5 explanation as I won’t

4There are obviously many other processes to keep the level of charge in the reservoir to a certain level, but no
need to get into that. Just know that it doesn’t get there magically, energy is needed to get it there. This is why
batteries run out, or why you don’t have electricity in your house if you don’t pay your electricity bill - in both
cases, the supply of charge in the reservoir stops.

5https://www.khanacademy.org/science/hs-physics/x215e29cb31244fa1:types-of-interactions/x215e29cb31244fa1:electric-
and-magnetic-fields/v/electric-field-definition
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be able to do anything better than this.

0.1.4 Voltage

Voltage6, (V ) is the potential energy of an electrical supply stored in the form of an electrical
charge. Voltage can be thought of as the force that pushes electrons through a conductor and the
greater the voltage the greater is its ability to “push” the electrons through a given circuit. The
difference in voltage between any two points, connections or junctions (called nodes) in a circuit is
known as the Potential Difference, (p.d.) also commonly called the Voltage Drop. The Potential
difference between two points is measured in Volts with the circuit symbol V, or lowercase “v“.

Voltage is always measured as the difference between any two points in a circuit
and the voltage between these two points is generally referred to as the “Voltage
drop“. Note that voltage can exist across a circuit without current, but current cannot exist
without voltage and as such any voltage source whether. This makes sense in the hydraulic
analogy - there can be a height difference but no water flowing but there cannot be a flow without
height difference 7.

Figure 2: Voltage symbol. Adapted from https://www.electronics-
tutorials.ws/dccircuits/dcp 1.html

0.1.5 Current

Electrical Current 8 (I), is the movement or flow of electrical charge (most usually electrons)
and is measured in Amperes, symbol I (or i), for ”intensity”. It is the continuous and uniform
flow (called a drift) of charge around a circuit that are being “pushed” by the voltage source
(height difference). In reality, electrons flow from the negative terminal to the positive terminal
of the supply (as electrons are negative and thus attracted by positive point); however, for ease of
circuit understanding conventional current flow assumes that the current flows from the positive
to the negative terminal. This is why, by convention, the flow of current in circuit diagrams is
represented by an arrow pointing from the positive to the negative node, despite electrons flowing
from negative to positive node. This convention goes back to Benjamin Franklin: ”As far as the
history goes, Ben Franklin imagined electricity as a type of invisible fluid that could build up or be
absent from a material, or at least certain materials. He believed that when this invisible fluid built
up the object was positively charged. When there was an absence of this fluid he called that material
negatively charged. It turns out he got the concept right but the nomenclature backwards.”. So it
really is because of him that conventional current flow is not in the same direction as electron
flow. Once you get used to it, it’s fine, but this can be quite annoying sometimes when you’re
trying to visualize how circuits work.

6Section mostly copy-pasted from: https://www.electronics-tutorials.ws/dccircuits/dcp 1.html
7Yes, yes, I know, you can have water flowing in a flat surface but this is either because you push it somehow

or because there is height drop somewhere further - in any case, water always flows as a result of some force being
applied, either gravity or something human generated.

8Section mostly copy-pasted from: https://www.electronics-tutorials.ws/dccircuits/dcp 1.html
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Figure 3: Electron flow and conventional current. Adapted from https://www.electronics-
tutorials.ws/dccircuits/dcp 1.html

Current is defined by the following important relation:

I =
dQ

dt
(1)

This becomes very clear in the hydraulic analogy, as we quantify the flow of water by the
quantity of water flowing at a given point in time.

0.1.6 Resistance

Figure 4: Resistor electric symbols. Adapted from https://www.electronics-
tutorials.ws/resistor/res 1.html

In the hydraulic analogy figure 1, if both valves 9 are opened, water will flow from the reservoir
into the sea at a finite rate, restricted by the diameter of the pipe through which it must flow. If
the water level in the reservoir is increased, water will flow more quickly (up to a certain level),
and the inverse is also true. The property of the pipe diameter and material, which restrict the
flow of water, is called resistance. The electrical element possessing this quality is called a resistor.

The principal job of a resistor within an electrical circuit is thus to “resist” (hence the name
Resistor), regulate or to set the flow of electrons (current) through them by using the type of
conductive material from which they are composed. Resistors can also be connected together
in various series and parallel combinations to form resistor networks which can act as voltage
droppers, voltage dividers or current limiters within a circuit. This is analogous to separating an
original pipe into multiple pipes where flow divides.

It is important to note that current is not affected by resistance in a closed loop circuit, because
there is always the same quantity of charge flowing in the loop. In other words, current
is constant everywhere in the closed loop circuit (admitting we do not add new elements), as
long as there is current flowing. Voltage however, drops when encountering the different valves,
simply because the height difference is reduced throughout water descent. This can seem a bit
counterintuitve, but it will become clearer as we go through series and parallel circuits later.

Resistors are represented in electrical circuits as shown in figure 4. A and resistance is measured
in Ohms (Ω). They are called “Passive Devices”, because they contain no source of power or
amplification but only attenuate or reduce the voltage or current signal passing through them.
This attenuation results in electrical energy being lost in the form of heat as the resistor resists
the flow of electrons through it.

9keep in mind from the first section that valves are simply switches, allowing water (or current) to flow (or not).
They can be thought of elements with infinite resistance when blocking flow, and 0 resistance when allowing flow
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Most types of resistor are linear devices that produce a voltage drop across themselves when
an electrical current flows through them. Different values of resistance produces different values
of current or voltage. This can be very useful in Electronic circuits by controlling or reducing
either the current flow or voltage produced across them we can produce a voltage-to-current and
current-to-voltage converter.

The resistance of any substance depends on the following factors: 1) the length of the device
(L), 2) the cross sectional area of the device (A), 3) the nature of material of the device, which
has an inherent resistivity (ρ, measured in Ω.m), 4) the temperature of the device (T ) (see Figure
4.B). All these variables also apply to evaluate pipes resistance in the water analogy!

R = ρ
L

A
(2)

We say that a physical element or device has infinite resistance when current doesn’t flow
through it: it is an insulator. In practice, there is always a tiny tiny bit of current flowing, simply
because infinite resistance is not realistic. To understand properly why this is the case, we would
need to look into the physics of conduction, which will be covered in chapter 2 when introducing
the transistor physics. For now, just imagine a big big wall - as big and strong as it is, if you have
a strong enough water pressure applied on it, it may eventually break and allow current to pass.
Another thing is that, even if it doesn’t break, the wall cannot prevent water molecules which
evaporate to pass to the other side. Moral of the story, even with very high resistance, you always
have some flow, and there is no such thing as absolutely infinite resistance - it can always break.
And exactly like in the water analogy, resistors can break if we apply too strong of an energy on
them.

One last thing, it is often convenient to view an electrical circuit element in terms of its
willingness to carry current rather than its reluctance to do so. As such, we often speak of
conductance rather than resistance. Both properties are analogous and represent essentially the
same idea. Conductance, represented with the letter G (sometimes g) is simply the inverse of
resistance: G = 1

R

0.1.7 Ohm’s law

Simply, there is a linear relationship that relates Voltage and Current:

I =
V

R
= V ·G (3)

A voltage of 1V olt across a resistance of 1Ω will cause a current flow of 1amp.
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0.1.8 Capacitance

Figure 5: Capacitor structure and electric symbol. Adapted from https://www.electronics-
tutorials.ws/capacitor/cap1.html

In the hydraulic analogy, the capacitor simply corresponds to the tank (with constant cross sec-
tional area). Depending on cross sectional area, it will be able to hold a certain quantity of charge.
It also needs time to charge up, and time to discharge. This leads to a shift in circuit analysis,
where ”steady state” analysis is not enough anymore - one must consider the charging and dis-
charging properties of the capacitor as one would consider the flow relative to the the tank filling
up and emptying itself.

In its basic form, an electrical capacitor consists of two or more parallel conductive (metal)
plates which are not connected or touching each other, but are electrically separated either by air
or by some form of a good insulating material such as waxed paper, mica, ceramic, plastic or some
form of a liquid gel as used in electrolytic capacitors. The insulating layer between a capacitors
plates is commonly called the Dielectric.

Due to this insulating layer, current does not flow through the capacitor as it blocks it allowing
instead a voltage to be present across the plates in the form of an electrical charge.

Also, because capacitors store the energy of the electrons in the form of an electrical charge on
the plates the larger the plates and/or smaller their separation the greater will be the charge that
the capacitor holds for any given voltage across its plates. In other words, larger plates, smaller
distance, more capacitance. This yields the following relation:

C =
ϵ0A

d
(4)

with C capacitance in Farads (F ), ϵ permittivity of the dielectric 10, A area of the plate overlap
in m2 and d distance between the plates in meter.

The capacitor is thus a component which has the ability or “capacity” to store energy in the
form of an electrical charge producing a potential difference (Static Voltage) across its plates,
much like a small rechargeable battery. Capacitance is the electrical property of a capacitor and
is the measure of a capacitors ability to store an electrical charge onto its two plates with the
unit of capacitance being the Farad (abbreviated to F) named after the British physicist Michael
Faraday

By applying a voltage to a capacitor and measuring the charge on the plates, the ratio of the
charge Q (in Coulomns) to the voltage V (in Volts) will give the capacitance value of the capacitor

10Permittivity is a measure of the electric polarizability of a dielectric. A material with high permittivity polarizes
more in response to an applied electric field than a material with low permittivity, thereby storing more energy in
the material
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and is therefore given by the following important relation:

C =
Q

V

One will then notice that 1Farad = 1CoulombperV olt
Although the charge is stored on the plates of a capacitor, it is more exact to say that the

energy within the charge is stored in an “electrostatic field” between the two plates. When an
electric current flows into the capacitor, it charges up, so the electrostatic field becomes much
stronger as it stores more energy between the plates. Likewise, as the current flowing out of
the capacitor, discharging it, the potential difference between the two plates decreases and the
electrostatic field decreases as the energy moves out of the plates.

Still not sure you understand? If you feel like you still need to grasp the fundamental idea
behind a capacitor, go watch the brilliant video by The Engineering Mindset on capacitors 11.

0.1.9 DC vs AC and exponential notation

The explanations dealt with so far have constant voltage sources and are just taken at ”steady
state” - think constant flow due to constant supply of water in the reservoir. Direct current (DC)
is the flow of electric charge in a constant fashion. It is the steady state of a constant-voltage
circuit. Most well-known applications, however, use a time-varying voltage source, yielding a
time varying current, and time varying signals in general. This is relevant here not because
we consider AC per se but rather because AC is a generalization of DC, and in some cases we
need the time component (specifically with circuits with some capacitance). It is thus useful to
be familiar with this concept, and most importantly, its notation. Alternating current (AC) is
the flow of electric charge that periodically reverses direction. If the source varies periodically,
particularly sinusoidally, the circuit is known as an alternating current circuit. Though batteries
or power supplies are mostly used to produce a steady D.C. voltage source, A.C. (alternating
current) voltage sources are used for domestic house and industrial power. This is for efficiency
and transmission purposes, that we will not get into.

Figure 1 shows graphs of voltage and current versus time for typical DC and AC power. The
AC voltages and frequencies commonly used in homes and businesses vary around the world.

Figure 6: Alternating and direct current. Adapted from https://courses.lumenlearning.com/

physics/chapter/20-5-alternating-current-versus-direct-current/

If we’re dealing with a different type of signal, we must use a different type of notation and
consider the differences with DC. As can be seen on Figure 6, AC behaves in waves, so it is
appropriate to treat is as such and use relevant notation that describes it properly. Also, we will

11https://www.youtube.com/watch?v=X4EUwTwZ110
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be using conventional notation for time varying voltage u(t) and current i(t) (as opposed to V
and I that were previously used). We can now define 12:

u(t) = Ucos(ωt+ ϕ) = Uejωt+ϕ13 (5)

Where U is the amplitude (peak value) of voltage, ω is the angular frequency, ϕ is the phase
offset (more on the phase in a second).

Impedance There is a generalization of resistance, called impedance (represented by the symbol
Z). It is also measured in Ohms. It is not really useful when working with DC current, but takes
meaning when working with AC current, which has a complex component to it (which we call
reactance but we don’t care about that). Ohm’s law still applies in AC and impedance
is simply the ratio of the complex wave representation of sinusoidal voltage (u(t)) between its
terminals to the complex wave representation of the current (i(t)) flowing through it. Impedance
therefore possesses both magnitude and phase; resistance, on the other hand, has magnitude but
no phase. This is why we say that impedance is a generalization of resistance, as resistance is only
a special case of impedance. For impedance, we note:

Z = R+ jX (6)

where R is the real part resistance and the imaginary part X is the reactance. The magnitude
of Z is |Z| =

√
R2 +X2, while the phase is ϕ = arctan(XR ). In general, ϕ is the phase difference

between alternating voltage and current: ϕ = ϕv − ϕi

Capacitance in complex analysis Capacitance is most often studied with complex analysis,
so let’s do that here and apply it to Ohm’s law. While the current flowing through a resistor is
given by the voltage applied to it, the current that flows through a capacitor is proportional to
the voltage change.

i(t) =
dQ

dt
=
d(CV )

dt
= C

du(t)

dt
(7)

Here, i(t) is the current through time, which we defined previously as being the derivative of
charge Q with respect to time. We also previously defined Q as being equal to the capacitance
times voltage V (following from C = Q/V ).

Differentiation can be conveniently performed in complex notation, yielding the following:

du(t)

dt
=
d(Uejωt)

dt
= jωUejwt = jωu(t) (8)

Therefore, for a capacitor, i(t) = C du(t)
dt = jω · C · u(t)

12I am here assuming that you are familiar with exponential notation of periodic signals. If you aren’t I suggest
you spend some time reviewing this.

13This is derived from Euler’s formula: ejx = cos(x) + jsin(x)
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0.1.10 Basics of Parallel and Series circuits

Figure 7: Parallel and Series circuit comparison. Adapted from https://www.

electricalengineering.xyz/questions/top-5-differences-between-series-and-parallel-circuits/

When dealing with electronic circuits, you can connect things in a variety of different ways, and
some key things are to remember. Figure 7 does a great job at explaining this. Voltage drops
across devices connected in series, but it is conserved across different branches of a circuit. Imagine
having one branch separating into different branches on the same surface in the circuit: as all the
pipes are at the same height from ground, they have the same voltage. Current is just the opposite,
which make sense when you think of hydraulic analogy: it divides when separated into different
branches and is maintained when flowing around a single loop. Resistance adds itself in series,
which means that connecting two resistors together in the same branch makes the overall resistance
stronger. This doesn’t apply in parallel, where another relation need to be applied to find the
total resistance of the circuit. If you have two branches and one has higher resistance than the
other (pipe with small diameter), more current will flow through the lower resistance ones than
the higher resistance one!

Capacitance, which is not shown on the figure, is actually exactly the opposite of resistance,
it adds up in parallel and follows the same principle as resistance in parallel when it is connected
in series.

0.1.11 Kirchoff’s Voltage and Current Laws

One very important law is needed to understand many circuits we’ll be studying: Kirchoff’s voltage
and current laws.

• Current law: All current flowing into a node (or junction) must be equal to the current
flowing out of it. This means that there is no charge (think water) disappearing.∑

Iin =
∑

Iout (9)

• Voltage law: In any complete loop within a circuit, the sum of all voltages across components
which supply electrical energy (such as cells or generators) must equal the sum of all voltages
across the other components in the same loop. This law is a consequence of both charge
conservation and the conservation of energy. Think of a closed loop of reservoir at different
height points which yield a continuous flow. Sum of heights will add up to 0.∑

Vtotal = 0 (10)

The following figure14 makes this much easier to understand.

14Adapted from: https://www.sciencefacts.net/kirchhoffs-law.html
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Figure 9: Schematic of a neuron. Adapted from the lecture notes of ETH Course: ”Introduction
to Neuroinformatics”.

Figure 8: Kirchoff’s current and voltage laws. Adapted from https://www.

electronics-tutorials.ws/capacitor/cap_1.html

These are, I believe, all the necessary pre-requisites to understand the content of the module.
Now we can build up from this and start understanding basics of transistors. But before heading
there, let’s look at some biology pre-requisites and try to explain them!

0.2 Basics of Computational Neuroscience

0.2.1 The Neuron

The most important component of our nervous system are neurons. They are able to encode
sensory input from our environment into neural representations, process the retrieved information
and decode it back into behavioural output, such as movements. Neurons are the fundamental
element underlying the intelligent behaviour of virtually every animal, allowing them to interact
with their environment, optimize survival etc... It is widely accepted that the number of neurons
within a brain correlates with a specie’s intelligence, somewhat similarly to a computer which
becomes more powerful with higher number of transistors.. Figure 9 shows the schematic of a
typical neuron.

There are 4 main components to the neuron: the soma, the dendrites, the axon and the
synapes (not shown on figure, but we’re getting there). These elements are enabling the individual
neuron to connect to neighbouring neurons from which they can receive information, through
synapses and dendrites, process this information, in the Soma and Synapses and propagate back
information to other neurons, through axons. Intelligent behaviour is made possible by setting the
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Figure 10: A) Biological cell lipid membrane, with the ion channels represented. Conductance
based model of the biological cell. Adapted from the lecture notes of ETH Course: ”Introduction
to Neuroinformatics”.

connections between different neurons and the ”decision” rule to send a message accordingly. There
exists many different subtypes of neurons, though they all exhibit relatively similar architecture
and function.

Much of Neuroscience’s research today is to understand the precise mechanisms by which
neurons communicate and wire with each other. Though there are many perspectives one could
focus one in order to study these dynamics, one particular paradigm of research has emerged
in the recent years: Computational Neuroscience. This subranch of Neuroscience devotes
great effort to create computational models of brain function by modelling, often with complex
mathematical equations, the behaviour of specific synpatic processes, individual neuron behaviour,
and the dynamics of network of neurons. This has mainly been enabled by the rise of computing
power and the improvement of imaging/recording technologies, which allowed observation, analysis
and modelling of the fine dynamics exhibited in our brains. Though one particular scientific
breakthrough gave birth this computational perspective: Hodgkin and Huxley’s description of the
Conductance-Based Model and the Action Potential.

0.2.2 Electrical Perspective of the cell

Hodgkin Huxley’s conductance-based model 15 is essentially an electrochemical model of the bio-
logical cell (the neuron is a special biological cell).

As you know from high school biology, a cell (and also a neuron) has an intracellular body
and a membrane which separates it to the extracellular space. The cell membrane consists of a
double lipid layer that separates ions in the extracellular space from ions and charged proteins
in the cytoplasm - it somewhat acts like an insulator. It so happens that both the intracellular
space and extra cellular space are full of ions, mainly potassium, calcium and sodium ions. These
ions are charged particles, and generate some electrical behaviour that we can analyze through
the lense of electronic circuits. We can thus also speak of membrane voltage Vm, as the potential
difference between the charged ions inside and outside the cell. We should also note that the cell
can be seen as a capacitor, as it contains charged particles on both ends of an insulating layer.
The insulating layer, actually contains specific ion channels that allow for specific ions to enter
or exit the cell at specific moments. Therefore, to change the membrane voltage, it is necessary
to charge the capacitance. The applied charge (Q) divided by the membrane capacitance (Cm)
gives the membrane voltage (Vm): Vm = Q/Cm. We can see that for a given amount of applied
charge, the smaller the membrane capacitance, the larger the membrane voltage change.

You can clearly see this on figure 10.A. Think of it like a dance club bouncer, allowing selected
guests only to enter (or exit). Bouncer are less selective on Tuesday nights than Saturday nights:

15I recommend this excellent blogpost explaining the dynamics in more details:
https://www.scientifica.uk.com/learning-zone/understanding-the-cell-as-an-electrical-circuit
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Figure 11: A) Action Potential Voltage change through time. B) Typical course of an action
potential.

their resistance or conductance changes depending on the context. These basic structural com-
ponents of the cell (and neuron) underlie the conductance based model that you can see on 10.B.
We can see from the figure a few key components:

• Membrane Capacitance Cm: This is the capacitance that the insulating membrane carries
by separating between the intracellular and extracellular space.

• The intracellular and extracelullar space. Flow of ions (yielding current) must go through
the different channels with specific conductance levels in order to enter or exit the cell.

• At rest (resting potential) the Sodium ions are in greater concentration outside the cell, and
potassium ions inside the cell. This is represented with the potential levels ENA and EK
configuration.

• A leak current IL as the membrane is not a perfect insulator.

All biological cells communicate with each other via electrochemical signals, which means flow
of ions entering and exiting the cells in precise fashion. This is very convenient because we can
apply much of our existing electronics mathematical modeling to describe these behaviours! Now
that we understand and have the intuition behind the language that cells communicate with, we
should understand the principal messaging characteristic: Action Potential

0.2.3 The Action Potential

The neuron in its neutral state, i.e. when it’s not receiving or sending any messages, has a
negative potential compared to its surroundings. This potential is called the resting potential
and it’s about -70 mV. It is caused by different concentrations of ions in the intracellular and the
extracellular space. The ”messages” a neuron receives are sudden influx or ions from neighbouring
cells. These are first processed at the synapse level and eventually transmitted to the Soma through
the dendrites. These can either increase the neuron’s resting potential, in which case they are
excitatory input signals, or further decrease it and are inhibitory inputs. When a neuron’s potential
is increased so much that it becomes larger than its a specific threshold voltage, it sends out a
message along its axon. This message is called an 11 (AP) and its typical course is visualized in
figure 11.

As can be seen from figure 11.A, once a neuron’s potential crosses its threshold value, it expe-
riences a large and fast increase of potential up to +40 mV compared to the extracellular space.
This phase is called depolarization as the potential difference between the cell’s intra- and ex-
tracellular space initially decreases. In the second phase, called the repolarization, the neuron’s
potential quickly decreases again. However, it doesn’t stop at its initial resting potential but be-
comes even more negatively charged. This is called the hyperpolarization phase and it is denoted
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as refractory period in the figure. The refractory period is the time it takes for the neuron’s
potential to return back to its initial state and during this time it is not possible, or at least a
lot more difficult, to generate another action potential. The action potential is commonly called
a spike and a neuron is said to fire when it generates a spike. The threshold voltage of a neuron
is usually around -55 mV.

The idea of threshold voltage makes sense on a practical perspective: as there are many neu-
rons, which constantly receive inputs from everywhere, either through noise or irrelevant signaling.
You want neurons to select only the strong input messages, the ones that are somewhat unusual -
you want neurons to filter out the noise. Functioning with a threshold voltage is a very clever way
biology figured out to implement filtering! Of course, there are very complex dynamics behind
this, and the way this precisely encodes information at the scale of the network is still an active
domain of research. Though a critical part of this was understood through the research of Hubel
and Wiesel and Donald Hebb, which we’ll briefly touch upon in the next chapter. Essentially, you
should remember two things: 1) Neurons that fire together wire together; 2) Specific neurons fire
A LOT when they receive specific inputs they’re sensitive to, and barely fire when these inputs
are not received.

On another note, the AP can, in some sense, be considered a ”digital” element 16 as it either
fires when voltage goes past the threshold - or doesn’t fire if voltage stats below threhsold. Whether
neural computation is digital or analog is an important discussion in Neuroscience, and generally
there is agreement over the fact that it is a mix of both - but that’s a topic of discussion on its
own.

Now that we have looked at generation of action potentials, how can we communicate it to
adjacent neurons? The generated spike travels along the axon until it reaches the axon terminals -
much like an electrical signal travels through a cable. Individual neurons are not directly connected
with one another but separated by the extracellular space. In order to communicate a spike across
this space, we need specialized structures right at the zone of contact between neurons: the
synpases.

0.2.4 The synapse

In 1897 Charles Sherrington introduced the term synapse to describe the specialized structure at
the zone of contact between neurons as the point in which one neuron communicates with another.
The topic of synapses is a complex one: most of the computation of neurons actually happen at
the level of the synapse. The synapse essentially is the element of the neuron that does most of
the processing, and enables (or not) the action potential to happen. Synapses can be electrical
or chemical, and allow excitatory or inhibitory dynamic into the post-synaptic neuron. The post
synaptic neuron is simply the neuron that comes after the synapse - so if you have neuron 1
sending message to neuron 2, the neuron 2 is the post synaptic one, and 1 is the pre-synaptic one.

As shown in the figure above, the presynaptic neuron, i.e. the axon on the top, and the post-
synaptic neuron, i.e. the dendrite, are separated by extracellular space, the synaptic cleft. The
presynaptic neuron is filled with chemical neurotransmitters. Once an action potential arrives at
the axon, these neurotransmitters are released into the synaptic cleft. The neurotransmitters fuse
across the synaptic cleft and bind to the receptors of the postsynaptic neuron. This reaction causes
a depolarization or a hyperpolarization of the postsynaptic dendrite. Whether the postsynaptic
neuron is de- or hyperpolarized depends on the type of the synapse and some neurotransmitter
dynamics. Synpases can either be excitatory, i.e. causing a depolarizaion, or inhibitory, i.e. caus-
ing a hyperpolarization, depending on the neurotransmitters they release upon activation.

A biologically-plausible model of synaptic transmission is given by the alpha function. It closely
matches the shape of postsynaptic potentials that were measured during in vitro experiments. The
alpha function is characterized by a gradual rise followed by a slow decay. For a single incoming
spike, the response of the membrane potential is defined as u(t) = te−τt. τ is the synapse’s decay

16Digital, or boolean, logic is the fundamental concept underpinning all modern computer systems. Put simply,
it’s the system of rules that allow us to make extremely complicated decisions based on the aggregate of relatively
simple 0s and 1s (”yes/no”) elements. Neurons firing can be seen as 1s, and not firing as 0s.
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Figure 12: Schematic of a synapse. Adapted from Wikipedia.

21



Figure 13: Alpha function as a biologically-plausible model of synaptic transmission (Taken from
[Com+20]).

Figure 14: Excitatory post-synaptic potential (EPSP) in response to multiple pre-synaptic spikes.
Adapted from Wikipedia.

rate which scales the output in amplitude and time. The amplitude is also shaped by the synaptic
weight. Figure 13 visualizes the alpha function for different weights and decay rates.

What is important to remember is that chemical synaptic transmission is characterized by
specific temporal dynamics directly correlate to the presynaptic neuron, as shown in figure 14.

Notice how the Excitatory post-synaptic potential (EPSP) changes in magnitude with the AP
incoming from the pre synaptic neuron.

0.2.5 Network and Computation

One can easily see that these models of biological elements, though vastly oversimplified in my
explanations, underlie very complex and intricate dynamics. In the brain, the complexity is
several orders of magnitude higher, as all these elements interact with each other in a chaotic yet
incredibly precise manner, which yields our ability to function. It is without surprise that many
scientists chose to solely focus on understanding the emerging function from complex networks of
the brain, and use the most basic of models of the brain’s individual components. This simple
idea has actually led to revolutionary progress, in various subfields. Mainly, Artificial Intelligence,
with the Neural Network revolution. The concept is very simple: build a computational neural
network, where neurons communicate with each other with a certain strength (synaptic weight for
excitatory or inhibitory activation), and propagate the signal further along the network. These
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extremely basic models of brain function are today revolutionizing the world. Other researchers
have focused on trying to replicate models of neural networks on hardware, or in less obvious
fashion than in traditional machine learning. This was the purpose of the Human Brain Project
for instance, which fell short of so many of its ambitions. Carver Mead, the godfather of the field
of Neuromorphic Engineering, envisionned copying some of the neural circuitry we understand in
order to build faster and more efficient devices than the traditional computing counterparts. This
has somewhat been successful, with the creation of the Silicon Retina by Misha Mahowald in the
1980s. Today, our understanding of the brain grows in complexity every day, and the idea of an
elegant, simple and unified theory of neural intelligence seems more and more out of reach for
humans. Nevertheless, simplified models have proven extremely effective for multiple real world
applications, and it is worth looking at some of its basic concepts. It also is particularly relevant
to Neuromorphic Engineering, as we will understand in due time.

0.3 Basics of Machine Learning

0.3.1 The Perceptron

As we have seen in section 0.2, the basic functionality of a neuron is to sum up the synaptic inputs
it receives from its dendrites and generate an output if the inputs cross a threshold value. The
first mathematical model of this functionality was introduced in 1943 by Warren McCulloch and
Walter Pitts. The McCulloch-Pitts model is considered the first artificial neuron. Its structure is
demonstrated in figure .
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1 Neuromorphic Engineering: History, objectives and chal-
lenges

The field of Neuromorphic Engineering emerged in Caltech in the mid to late 1990’s mainly
through the work of Carver Mead et al. Carver is an eminent researcher who has enormously
contributed to computing development and research. To understand what this field is all about,
one should first look back at the birth of modern Neuroscience as well as the development of
modern computing: both these fields witnessed major developments between the 1950s and 1970s
which opened, as we all know, an ocean of opportunities for innovation in multiple fields.

1.1 Modern Neuroscience

The field of Neuroscience is certainly the most misunderstood of all ”biological” fields. The main
reason is that its serious study only started very late in scientific history, as there was no way
for researchers to observe anything of interest inside a dead brain, and let’s not even talk about
the possibility of observing things in alive beings. So much that some early views regarded the
brain as ”cranian stuffing” - Egyptians believed that the heart was the seat of intelligence, so they
literally took out some parts of the brain (through nostrils) after the death of individuals - yes,
that was a long time ago, but that tells you something about how ignorant people were about the
most complex human organ.

Fast forward to the 19th century, where it was accepted that the brain was human center
for senses and intelligence, and where Neuroscience subsequently started to be recognized as an
academic discipline in its own right.

1.1.1 Cajal and Golgi: the birth of Neurons

”Far from being able to accept the idea of the individuality and independance of each
nerve elemnt, I have never had reason, up to now, to give up the concept which I have
always stressed, that nerve cells, instead of working individually, act together [...].
However, opposed it may seem to the popular tendency to individualize the elements,
I cannot abandon the idea of a unitary action of the nervous system.” - Camilo Golgi,
1906

The m
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1.1.2 Hodgkin and Huxley: The neural cell as a computational unit

1.1.3 Hubel and Wiesel Mountcastle: Experimental work on Neuron’s Input to
Output

1.1.4 Model of the brain as a complex system with detailed individual component
behaviour

1.2 Modern Computing

1.2.1 The transistor

1.2.2 Perspective shifts and realizations: Von Neuman, Mravin Minsky, Feynmann
and Carver Mead

1.3 Neuromorphic Engineering

1.3.1 Carver Mead and the Caltech Graduate Course

The train of events that led to this book began in 1967, when Max Delbruck
introduced me to neurobiology. In 1982, Richard Feynman, John Hopfield, and I
jointly taught a course on ”The Physics of Computation.” As a direct result of that
course, I began to see how to undertake the creation of something resembling
neural computation in the VLSI medium.

Carver Mead in Analog VLSI and Neural Systems Acknowledgment

”The train of events that led to this book began in 1967, when Max Delbruck introduced
me to neurobiology. In 1982, Richard Feynman, John Hopfield, and I jointly taught a
course on ”The Physics of Computation.” As a direct result of that course, I began to
see how to undertake the creation of something resembling neural computation in the
VLSI medium.”

1.3.2 First Breakthroughs: Misha Mahowald and Silicon Retina

1.3.3 From research breakthroughs to deliverables

1.4 The rise of Machine Learning

1.5 Modern challenges and objectives

1.5.1 Energy considerations

1.5.2 Efficiency considerations

1.6 Challenges

1.7 List of complementary readings

• Von Neumann Silliman Lecture: The Computer and the Brain. 17. This essay represents
to me the birth of Computational Neuroscience. Von Neumann, saw and wrote (from his
deathbed) the strinking analogies that one could make between the brain and the computer,
and introduced the world to the idea of studying them both at the same time.

• Analog VLSI and Neural Systems, Carver Mead 18. The first textbook on Neuromorphic
Engineering, by the creator of the field. This textbook is a marvel (see Chapter 0) and
explains so many critical concepts of the field with stunning simplicity.

• Documentary on Misha Mahowald 19. Great overview of the development of the field and
the kind of work that emerged from the ”Physics of Computation” course at Caltech.

17https://complexityexplorer.s3.amazonaws.com/supplemental_materials/5.6+Artificial+Life/The+

Computer+and+The+Brain_text.pdf
18https://www.amazon.com/Analog-VLSI-Neural-Systems-Carver/dp/0201059924
19https://www.youtube.com/watch?v=lwT1jUvwRLc
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• Giacomo’s Porto conference 20. Great introduction to the motivation, breakthroughs and
challenges of modern Neuromorphic Computing by Giacomo - our teacher and a pioneer in
the field.

• Shi-Chii’s Conference 21. Similarly to Giacomo’s conference, great introduction to the mod-
ern challenges and applications of the field.

• Event Based Vision: a survey. 22 Overview of one of the main applications of Neuromorphic
Computing in a very comprehensive paper.

• Carver Mead IEEE guest paper 23. This is an opinion paper from Carver Mead where he
explains why he believes in the field having such a strong potential.

• Hubel and Wiesel paper 24 and documentary video 25. Their experiments are revolutionary
and it is worth knowing what they’re about.

20https://youtube.com/watch?v=cwQ8edHQFOA
21https://www.youtube.com/watch?v=tZM49YjUVDk
22https://arxiv.org/abs/1904.08405
23https://authors.library.caltech.edu/53090/1/00058356.pdf
24https://authors.library.caltech.edu/53090/1/00058356.pdf
25https://www.youtube.com/watch?v=8VdFf3egwfg
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2 The Essential Physics Behind the Transistor

As the main purpose of NE1 is to understand how to emulate brain function through elaborate
transistor circuits, it is only necessary to grasp the intuition behind their intrinsic physical be-
haviour, and not the details of the physics, which would need a whole semester (at least) to cover
properly. This is why we only focus on grossly explaining the concepts in a digestible manner,
with only the details that will be absolutely necessary to understand later concepts. This chapter
is subsequently devoted to presenting all the critical building blocks of the transistor, which will
be covered in the following chapter.

Before starting this chapter, the student should be familiar with the following concepts:

• Basic atomic structure (high school level)

• All Electrical Engineering fundamentals introduced in Chapter 0.

2.1 Silicon: the magic semi-conductor

Silicon, which has given its name to the Silicon Valley, has joined since the late 50s the club of
very important physical elements. Some greedy souls would even argue it’s more important than
Oxygen today: you can’t make people pay for oxygen but you can make them pay for things that
are built out of Silicon. Today, it’s not just your typical sex-toy that uses Silicon(e) 26, but pretty
much every electrical circuit. What makes Silicon special? How does it work? And how do we
use it?

2.1.1 Prelude: Material Conductivity

Conduction is not difficult to understand. You can effortlessly walk through air. It’s a bit more
difficult to walk through water, but you can still do it if you have enough energy. Walking through
a wall is merely impossible tho, except if you, like superman, are on Kryptonite. Same idea applies
to materials, which are conductive, insulating or semi conductive. You need some energy to make
a semi conductive material conductive, just like walking through water. Similarly, you can only
manage to make a current flow through an insulator by applying an unusually high voltage. This
is also why we say that insulators have infinite impedance (in practice, it just is extremely high
rather than infinite) - following Ohm’s law, you need an infinitely high voltage (think Voltage on
Kryptonite) to have current flowing.

Moving on to one of the most important concepts to understand when it comes to this chapter
(and transistors physics): Band Theory. This is the model that allows us today to understand
what, at an atomic level, allows a certain material to conduct (or not) electricity, and the way it
does so. This also allows us to understand how the conductive properties of the material evolve
as a function of external factors, such as temperature or voltage for example.

Most of the following explanations are based on the excellent video ”Band Theory (semicon-
ductors) explained” from PhysicsHigh Youtube Channel 27.

First, we should remind ourselves that the atom is made of a nucleus with positive (and neutral)
charges, and electrons around it in discrete shells. Note: if you’re not already familiar with the
structure of an atom, the concepts of shells etc.., I suggest to look this up and come back here
when you’re familiar with it.

26silicone or polysiloxane is a polymer made up of siloxane - silicones consist of an inorganic silicon–oxygen
backbone chain (SiOSiOSiO) with two organic groups attached to each silicon center.

27https://www.youtube.com/watch?v=zdmEaXnB-5Q
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Figure 15: A - Structure of Sodium Atom - a conductor. B - Structure of Chlorine Atom - an
insulator. C - Simplified and generic Band Energy Diagram of conductors, semi-conductors and
insulators.

An atom such as Sodium has 11 protons and electrons, and are arranged as shown in Figure
1.A in shells - 2 in K shell, 8 in L shell and 1 in M shell. In this specific example, the M-shell is
the outermost shell, which we can also call the valence band. On another note, the 11th elec is
alone on the valence shell (where there are 7 other spots to fill), and it thus is loosely held on that
shell, and is consequently rather free to move when a very small potential difference is applied 28.
Sodium is thus a conductive material: it does not require much energy to have an electron moving
around, which creates a current.

Now when we look at Chlorine in Figure 15.B, we have a different setting where the valence
(outermost) shell is almost filled (7/8 electron space filled). This causes the electrons on that shell
to be very tightly held together as opposed to what we saw before with Sodium. They are thus
not free to move and thus cannot generate current. In order for them to move, we need to provide
enough energy for some of them to ”jump” to the next shell, where they eventually will be more
free to move - the conduction band now corresponds to this next shell. To understand properly
this, you need to go back to Bohr’s theory that states that energy levels of electrons are quantized:
it can have enough energy to reside in the M shell, and it can also have enough energy to reside
in the next shell, but it cannot be in between where there exists a ”forbidden gap”. We therefore
need to provide a very specific amount of energy for it to jump ”the forbidden gap”.

You guessed it, it’s basically an in-between Sodium and Chlorine that makes up for a semi-
conductor. We’ll look specifically at Silicon in more details soon.

To sum things up: In a conductor, the valence band and the conduction band are overlapping:
very little energy is needed to make electrons move around. In an insulator, the valence band are
the conduction band are separated by a very significant energy gap: we need a huge energy supply
(huge voltage for example) to make electrons in the valence band ”jump” the ”forbidden energy
bandgap” to join the conduction band and finally become conductive. In a semi-conductor, the
valence and conduction band are not initially overlapping, though we only need a relatively small
amount of energy to have electrons make that jump, and most often, thermal energy (heat) is just
enough.

28Understanding why this is the case requires a lot more physics, so just accept this as being true for sake of
simplicity.
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Figure 15.C very simply represents the concept of what is called ”Band Theory”: a visual
representation of energy levels of a given material. You can see that the valence band is overlapping
with the conduction band in the case of a conductor, as we saw with Sodium. There is a small
energy gap between the conduction band and valence band in the case of semi-conductors, and a
very large energy gap in the case of insulators. Energy band diagrams therefore give you a visual
representation of the amount of energy that is needed to make charges (holes and electrons as
we’ll see later) move from one energy state to another, and become conductive.

2.1.2 Thermal Consideration

Temperature is energy, and it affects properties of materials.

• Insulators: at 0 K the valence band is completely filled and the conductance band is
completely empty. No charge transport can take place in either bands. In room temperature,
there is still a negligible amount of charge in the conduction band.

• Semiconductors: at 0 K semiconductors are equivalent to insulators. The size of the band
gap Eg is small in semiconductors (e.g. 1.1 eV for silicon (Si), 5 eV for diamond (C)). In
semiconductors, the number of electrons available for conduction is significantly increased
by thermal energy.

• Metals (conductors):the energy bands overlap, thus electrons and empty energy states
are intermixed. At 0 K an applied electric field can generate current flow (electrons can
move freely).

• The Fermi Energy Level is the difference between the highest and lowest energy of elec-
trons at a temperature of 0 Kelvin.

Thermal Energy need also be looked at. We speak of Thermal Voltage Ut: it is the mean
potential caused by the thermal motion of electrons. At room temperature, the thermal voltage is
a relation between the charge q, Boltzmann’s constant k and the temperature T in Kelvin:

Ut =
kT

q
=

1.38 · 10−23J ·K−1 · 300K
1.6 · 10−19C

≈ 25mV = 1/40V (11)

Note that this holds as 1 Volt = 1 Joule / 1 Coulomb.
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2.1.3 Silicon: structure, doping and properties

Figure 16: Periodic Table. Silicon and Germanium are semi-conductors. Aluminum, Boron are
Acceptor Impuriy atoms: they yield free holes, Phosphorus and Arsenic are Donor Impurity
Electrons: they yield free electrons. Adapted from Lecture Notes.

This section is extensively based on Jordan Edmunds excellent lecture series on semiconductor
physics 29. If you fail to understand what I write, I highly recommend checking out his explanation
which go in greater depth into the topic.

29https://www.youtube.com/watch?v=OVnVN0vSXn0list=PLQms29D1RqeKGBEW8La2a7YuN54pSV 4k
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Figure 17: Intrinsic Silicon structure, and effects of doping to the structure. Blue dots are valence
electrons, and red lines are ”covalent bonds”. Drawing by Yassine.

Silicon Structure Silicon is no exception to other semi conductors (and other materials) with
atoms arranged in rectangular or diamond structure structures, known as crystals (see figure 17.A).
These structures are defined and held together by the way the valence (outermost) electrons of the
atoms are distributed. Silicon’s atomic number is 14: it has 14 protons and 14 electrons, including
4 in its valence (outermost) shell. It takes two neighbouring valence electrons to form a covalent
bond ; this yields, in a silicon crystal, to each of the silicon atoms being bonded to 4 other silicon
atoms (as shown in Figure 2.B). This is where the ”diamond” analogy comes from.

Silicon Doping We’ve just presented the structure of intrinsic silicon (basically pure silicon).
Intrinsic silicon happens to have have a high impedance at room temperature (so it conducts, but
not very well conducting), this cool video 30 reports an impedance for a 2cm piece of Silicon of
130.000 Ohms - that’s quite a high impedance . We can significantly increase the conductivity
of a semiconductor by doping it with impurities. Doping consists in a small fraction of the
semiconductor atoms in the crystal structure to be replaced by atoms of a different element, which
are obviously not chosen randomly. The atoms are of course electrically neutral, and they can be
of two sorts: donors and acceptors. Donor impurity is an atom with a valence electron more
than the semiconductor atom, and an acceptor impurity is an atom with a valence electron less
than the semiconductor atom (see Figure 16. Let’s look at the concrete examples of Phosporus,
and Boron.

As shown in figure 17.B, you can add a Phosphorus atom to silicon crystal. A Phosphorus
atom has an atomic number of 15 and has 5 electrons in it’s valence shell (which are the blue
ones represented in the picture). It will form traditional double covalent bonds with silicon with
4 out of its 5 outermost electrons. Will now be left that extra electron which does not have
anything to bond with, and is just lying there, freely moving and looking for some mate to bond
with. We consider that this electron has entered the conduction band. An important thing to
realize is that phosphorus has just lost one of its electrons, and it still has 15 protons. So this
phosporus just turned into a phosphorus ion, and a positive one: P+. The issue with that charge
is that it cannot be filled by just bringing in a new electron, because that electron would not

30https://www.youtube.com/watch?v=k12GMjtN8aAabchannel = MITOpenCourseWare
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have any other electron to form a covalent bond with, which is why it lost an electron in the first
place. To phrase it another way (and you’ll understand in the next section why I need to phrase
it another way): the positive charge accumulated in the phosphorus atom is not an available
state which an electron can fill. As such, the positive charge in the phosphorus atom, the (donor
impurity) is there to stay; however the negatively charged electrons are the ones moving around
freely, thus justifying its name: the N-Type Doped Silicon. Before we move on to the next
bit, note that we managed to add free moving electrons to crystal by doping it with phosphorus,
but we actually do not change it’s overall charge! It still is a neutral piece of crystal, because it
has the same number of free electrons than of positively charged phosphorus ions. Pretty cool huh?

Now let’s look at what happens when injecting an acceptor impurity atom: Boron (see figure
17.C). Boron has atomic number 5, which means that he has 3 electrons in its outermost valence
shell. When injected to Silicon, it will form traditional double covalent bonds with silicon on all
3 of its valence electrons. But here is the thing, Boron still has space for more electrons on its
outermost shell, it still has one available state that could potentially be filled by electrons, we say
that it now carries a hole. A hole is not a formal charge, but it behaves just like one: it is the
absence of an electron in a particular place in an atom. So what you get is electrons hopping in
this hole (and thus filling it). But when that happens, the electrons also leaves a hole behind it
from the place it left. What you get is virtually a range of positively charged holes moving around
freely in the P-Type Dope Silicon crystal.

Now that we understood the basic idea behind doping, let’s look at some band energy diagrams
to see how doping affects things.

Figure 18: Band diagram of intrinsic, N-Type and P-Type silicon. EFi , in dotted lines, corresponds
to the intrinsic silicon Fermi Level, which is the actual Fermi Level in intrinsic graph. For P-Type
and N-Type, the effective Fermi Levels are at different positions than in the intrinsic case, shown
in corresponding straight lines. Adapted from a bunch of graphs I saw which didn’t really make
sense to me, so I drew my own. Hope it’s correct lol.

To me, this is the only necessary band diagrams to understand when it comes to intrinsic
vs doped semi conductors. It is necessary to understand it in order to approach properly the
PN-Junction, which we will look at in the next section. In general, you should remember that
the Fermi Level is determined by the doping density of charge carriers (electrons and holes). In
an intrinsic semi conductor, there are (schematically) as many holes as there are free electrons,
and the Fermi Level is not in the conduction band, nor near it. Remember that the Fermi Level
is the difference between the highest and lowest energy of electrons at a temperature of 0 Kelvin.
That means, as we know, that an energy must be provided in order to make the material conduct
electricity. When doping semi conductor in N-Type manner, we reach a level with a significantly
higher level of free electrons, a lot of them already in the conduction band, thereby making the
Fermi Level a lot closer to the conduction band, and thus more conductive for less energy provided.
In the case of P-type , this is the opposite, and because the density of holes is a lot higher than
the density of free electrons, the Fermi level is a lot closer to the valence band. However, one
must remember that it is specifically holes in the valence band that can move freely and generate
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a current flow. This is why at equivalent concentrations, N-Type and P-Type semi conductors
have the same conductivity level 31.

Note: We can dope semiconductor to different levels. A weak P-type doping is denoted p−

and a very strong N-Type doping by n++ (you get the logic). If the semiconductor is so strongly
doped that the Fermi level is within the conduction or valence band or very near the edge of one of
these bands, such that a large fraction of the states at the band edge are occupied, its properties
become similar to those of a metal and we speak of a degenerate semiconductor.

How is doping done in practice? You may wonder how does doping of silicon work in
practice? The two main methods are:

• Thermal diffusion: Heat silicon in closed quartz tube, pump in some vaporized phosphorus
or boron, and the dopants literally diffuse into the solid silicon

• Ion implantation: With an electron gun type of device, release small amounts of vaporized
phosphorus, arsenic or boron, accelerate the resulting ions to a high velocity and ram them
into the silicon.

At the dawn of semiconductors (from 1948 to 1960), diffusion was the primary method.

2.2 Understanding the PN junction and the Diode

Most explanations and graphics for this section are taken or inspired from the two brilliant explana-
tion from The Organic Chemistry Tutor Youtube Video ”What is a Diode”, and The Engineering
Mindset Video ”Diodes Explained”. The precise dynamics of what I am explaining could be stud-
ied over a whole semester, but understanding the basic idea is enough for what’s needed from
us in the exam. If you want more, refer to the Textbook, which will point you to appropriate
electrostatics and semiconductor textbooks.

So, let’s start. You might have heard of diodes before NE1 - they are semi-conductive devices
that allow current to flow in one direction only. Ever heard of LEDs? Yes, they’re diodes: Light
Emitting Diodes.

31Take this with a grain of salt, I am really not sure whether that is the case in practice
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Figure 19: Understanding the diode. A) Schematic of diode in circuit with its anode and cathode.
B) Schematic representation of the structure of a diode, and its PN Junction. C) What happens
when sticking P-Type and N-Type semi conductor materials together. D) Forward and reverse
current functionning principles in diodes. Adapted from multiple places.

Diodes are drawn in circuits as shown on figure 19.A. Current flows in the direction of the arrow,
which means that electrons flow in the opposite direction (thanks again Benjamin Franklin). The
”wall” at the tip of the arrow is there to remind you that current really only flows in one direction.
So how does it do it? How does it allow current to flow only in one direction?
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Diodes are essentially PN Junctions. A PN junction is what happens when you put P-Type
doped semi conductor next to N-Type doped semi conductor (typically silicon). As shown in figure
19.B. the P-Type semi-conductor is known as the anode, and the N-type to an cathode. What
happens when you stick P-Type and N-Type semi-conductors together?

This is the purpose of figure 19.C. As you already know, and as you can see in figure 19.C.1, the
P-Type is filled with free holes and the N-Type is filled with free electrons. The junction between
the two is what we call the PN Junction. 19.C.1 only shows you what you theoretically expect, but
of course, as soon as you actually stick the two bits together, things start happening, which are
shown in 19.C.2-4. The first thing to consider is that some of the excess electrons from the N-Type
move over to the P-type side to occupy some holes - this occurs through a diffusion process. This
yields the depletion region that you see in 19.C.2. This diffusive movement of electrons from N
to P region causes some of the initially P-Type region to become slightly negatively charged and
the N-type region to become slightly positively charged 19.C.3. An electric field is consequently
created, in the opposite direction, which prevents further electrons from moving across (19.C.4).
The depletion region is defined as a region in semiconductor devices, usually at the juncture of
P-type and N-type materials, in which there is neither an excess of electrons nor of holes. This
works with our figure and explanations!

In typical diodes, made of silicon, you should know that the potential difference between the
slightly positive and slightly negative region is ≈ 0.7 Volts. This will become relevant soon.

Now what happens when you connect a voltage source to the diode?

This is the purpose of figure 19.D. If you connect the anode (P-type) to the positive end of
your voltage source, and the cathode (N-type) to the negative end, you’ll get (if the potential
difference on your battery is > 0.7V ) a nice current flowing in forward bias mode (19.D.1).
Alternatively, if you reverse the power supply, for reasons that become very clear on 19.D.2, the
holes are pulled towards the negative and electrons towards the positive, which causes the barrier
to expand and (almost) no current to flow: we’re in reverse bias mode. Yes, the barrier is
similar to the band gaps we talked about before - and this is why in reverse bias mode, the diode
acts as an insulator. We now know how diodes only allow current to flow in one direction. Pretty
cool right? The stronger the reverse bias, the larger the surface area of the depletion region! This
will be particularly relevant in the photodiode chapter. Now to enter a bit more details, which
are shown in 19.D.3: current really starts flowing when you apply a voltage (in the right mode)
superior to some ”forward potential barrier”, which in the case of silicon is ≈ 0.7V. From then,
current flows. Now when we apply a voltage in reverse bias mode, you can see on 19.D.3 that the
current flow is not exactly 0 (because it really never is anyways). If you apply a strong enough
voltage in reverse bias (remember, voltage on Kryptonite), you eventually will force a current,
and probably damage your diode by the same occasion (just like Superman would break the wall
and not simply go through it). In general, you always have both a forward and reverse current
component, that’s just how electron dynamics work, though depending on the voltage you apply,
one is several orders of magnitude more important than the other, which is why we neglect it.

What does this give in Band Energy Diagrams? You thought you could escape it didn’t
you? Don’t worry, we’ll make it simple.
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Figure 20: Band diagram of the diode, and its corresponding electric field ϵ in the depletion region.
Electric field is negative as it, by convention, is from positive to negative, and the arrow points
from negative to positive. Yassine drawing, attempting to simplify the Textbook drawing.

2.3 MIS Capacitance Structure

We are now reaching the last part of what we need to understand in physics before getting to
the transistor. The Metal-Insulator-Semiconductor (MIS) structure consists of assembling some
conductor and some semiconductor, separated by a thin insulating layer. The most common
version of the MIS structure is the MetalOxide-Silicon (MOS) structure, where the ‘oxide’ is
in most cases silicon dioxide (SiO2). The MOS structure and the PN junction diode are the
building blocks of today’s most widely used type of transistor, commonly known as Metal-Oxide-
Semiconductor Field-Effect Transistor (MOSFET). This is the transistor we will study in the next
chapter.
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Figure 21: MOS Capacitor structure. A thin layer of insulating Gate Oxide separates two con-
ductive material: a polysilicon metal gate and a doped semi conductor p substrate. Adapted From
Lecture Notes.

As shown in figure 21, a thin layer of insulating Gate Oxide separates two conductive material:
a polysilicon metal gate and a doped semi conductor p substrate. The p-substrate is simply p-
doped silicon, which is at a potential of 0V in this case, as can be seen on the figure (it is connected
to ground). Because of the capacitive structure, interesting things start to happen when we apply
a non-zero voltage on the metal gate, which is what we need to look at. Typically, imagine that
when applying a negative voltage on the metal gate, negative charges accumulate on the gate and
positive charges accumulate on the other side of the insulating layer in the p-substrate. Conversely,
when applying a positive voltage on the gate, positive charges accumulate on the gate and negative
charges accumulate on the surface of the insulating layer of the p-substrate (it’s more complicated
than this as we’ll see, but this should just help you build the intuition). Essentially, very distinct
dynamics are obtained as a function of the applied gate voltage - this is critical to understand the
transistor. Let’s look at all the different case scenarios and their implications 32:

32We’ll only take the example of p-substrate, but the inverse holds when working in n-substrate.
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Figure 22: MOS Capacitance and its different operation modes. Adapted From Lecture Notes.

Accumulation Accumulation happens when a charge on the gate attracts a lot of majority
carriers on the surface of the semiconductor underneath it. For a p-substrate channel (as shown
in figure 22), a negative voltage on the gate means mobile electrons on the gate. These electrons
attract positive charges on the semiconductor surface underneath it, leading to accumulation of
them. Since positive charges (holes) are the majority carrier in p-substrate, we call this situation
accumulation. It is made even more p-type.

Flat Band In an ideal MIS diode, with no bias applied (Vg = 0), the work function of the
metal and the semiconductor are the same. The Fermi levels line up and the energy bands in
the semiconductor are flat. In Flat-Band Condition, the majority carrier density is constant and
equal to the dopant density.

Depletion For a p-substrate channel, if we apply a positive subthreshold 33 voltage on the
gate (positive charges), we push away positive majority carriers on the semiconductor surface. A
depletion region is created where only fixed negative charge carriers remain. This is the same
depletion region we saw in the PN-Junction; but instead of being formed naturally, you create it
by pushing the majority carriers of the p-substrate away.

Inversion Eventually, by increasing the positive voltage on the gate and pushing away majority
carriers from the p-substrate away from the gate, we progressively start having mobile minority
carriers (electrons here) accumulating at the semiconductor surface - this is called inversion. In-
version happens when the surface is inverted: it becomes n-type silicon rather than p-type. The
precise gate potential at which this happens is known as the threshold voltage and is what dis-
tinguishes depletion from inversion mode. The threshold voltage is thus the exact voltage value at
which mobile charge density equals doping density - when we go beyond, mobile charge takes over!

33explanation on this coming in the Inversion paragraph - don’t worry, it will make sense
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These dynamics are summarized in the following figure:

Figure 23: Dependence of the area charge Qs on the surface potential for p-type silicon with
acceptor density NA = 4 · 1015cm3 at room temperature. Adapted From Textbook.

Here we can introduce quantification of charge. We define Qg as the amount of charge accu-
mulated at the gate. What one should pay attention to in this figure is how the surface potential
changes as a function of Qs. Qs is simply −Qg, which is, like Qg, directly related to the gate
voltage Vg. Of course, this dependance varies with different doping concentration and other such
factors, but the nature of the relationship remains the same. Now we can even draw some equation
to summarize this point:

Qg = −Qs = Qd +Qi (12)

With Qd charge on the depletion layer and Qi charge on the inversion layer. Essentially, this
yield a sort of capacitive model - the MIS Capacitance Structure - where we can consider charge
at different points in the structure, and distinguish two capacitors: one actual capacitor with
the gate and the inversion region, and another virtual one between the depletion region and the
substrate. We can say that the one between the depletion region and substrate is virtual as there
is no actual insulators between the two charged regions, but there clearly are opposite charges on
both ends, just like a capacitor.

All the important elements subsequent from what we’ve just described are presented in the
following 4 slides, which are shown on figure 24.
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Figure 24: A) The depletion capacitor. B) Influence of the gate on the surface potential. C) How
does changing Vg change ψs. D) Change in κ below and above threshold. Adapted From Lecture
Notes.

Let’s unpack all of this.

A) The depletion capacitor Let’s remind ourselves that C = dQ
dV . This means that the more

charge is accumulated per change in voltage, the higher the capacitance. We’ve described in the
depletion regime that mobile charges are pushed away, only to leave fixed ions. This means
that capacitance is reduced in the depletion regime! Indeed, it doesn’t bring in new charges as
we increase voltage, but actually pushes charges away - so dQ is small for a given dV , at least a
lot smaller than for accumulation or inversion regime. This justifies the graph we see on 24.A.
Now when we go above threshold voltage, in inversion regime, remember that the voltage is so
strong that mobile charge carriers are attracted to the surface. Change in voltage yields important
change in charge carriers: capacitance is big again! We subsequently differentiate between Oxyde
capacitance Cox and depletion capacitance Cdep.

B) Influence of the gate on the surface potential On this figure, we see the full idea of the
MIS capacitance structure, with the gate voltage, the oxyde capacitance, the surface potential,
the depletion capacitance and the substrate - connected to ground. The surface potential changes
as a function of the gate voltage - we define the change in surface potential ψs as a function of
the change in gate voltage with a value of important significance: κ.

dψs
dVg

=
Cox

Cox + Cdep
= κ (13)

Because this rate of change is different depending on the operating regime (depletion or inver-
sion), it will have a different value as a function of the region. We will see this clearly in 24.D.
The math behind this will also become clearer in 24.C.

C) How does changing Vg change ψs Here, we are trying to understand the equation derived

previously, that is, why dψs
dVg

= Cox
Cox+Cdep

. The basic assumption to understand this is that the

charge doesn’t change: whatever charge appears on Cox need also be on Cdep, simply because of
charge conservation. No charge can be created! From this, understanding the equation on the
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figure is (relatively) straightforward. Now one intuition to remember: if Cox is big, κ will be close
to 1

D) Change in κ below and above threshold κ is the slope of ψs vs Vg! It is constant below
threshold and experiences a shift when approaching the threshold to become again constant, and
close to 0, above threshold. This is because, in inversion, the surface potential is pinned - so the
change in surface potential is very small when changing gate voltage.

Concluding thoughts on MIS Capacitance: If this is not perfectly clear for you, you’re not
alone - this is one of the trickiest concept about device physics and really the whole module. It
also happens to be one of the most important one to understand transistors dynamics. The issue
is that abstractions and simplifications have limits: the dynamics described here are very complex
and need substantial physics to understand clearly. But because this really is not the topic of
Neuromorphic Engineering 1, it is taught rather quickly. In any case, there are some absolutely
critical points that you should remember and be fairly okay with about this:

• What MIS Capacitance stands for

• How changing the voltage at the gate influences what happens in the semiconductor substrate
on the other side of the insulating layer

• Qualitatively describe the difference between Accumulation, Flat Band, Depletion and In-
version Regimes.

• Understand the very important concept of the threshold voltage, and what specifically hap-
pens when we cross this threshold.

• The two different capacitors in the MIS Capacitance: Oxyde capacitor and Depletion Ca-
pacitor

• The idea behind κ, and how it relates surface potential to gate voltage (equations + slope).

2.4 Test yourself

You should know and understand the following things:

• Structure of Silicon.

• Difference between conductors, semi conductors and insulators on an atomic perspective,
and with some intuition about the band energy diagrams.

• The idea of doping, how that changes conductivity and band energy diagrams.

• The idea behind the PN Junction and the dynamic it creates (depletion, electric field etc..).

• How the diode works, and the principle of forward vs reverse bias mode.

• The idea behind the MIS Capacitance structure and its operating modes as a function of
gate voltage.

• What κ represents and how it relates the change in surface potential vs gate voltage.
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3 Transistor Operation

3.1 Building an Intuition of the Transistor

We have in the previous chapter presented all the necessary information to understand the basic
structure of NE1’s rockstar: the transistor. Specifically, we’ll be looking at the Metal-Oxide-
Silicon-Fielf-Effect-Transistor, commonly calledMOSFET, which is a particular type of Transistor,
extremely common in industry. There exists other types of transistors that we don’t look at in this
course, such as the BJT (Bipolar Junction Transistor), as well as many others. The currents in
these devices comprise either positively-charged holes, negatively-charged electrons, or both holes
and electrons. The BJT is called a bipolar device because the current in the transistor consists
of both types of carriers, electrons and holes. The MOSFET is called a unipolar device because
the current has only one type of carrier, either holes or electrons. All transistors have at least
3 terminals (often 4). Though they all exhibit similar behaviours, some differences make them
more useful in some applications. The following section is mostly about developping an intuition
about the transistor structure and function. We will get into the specifics of operation in the next
section and derive the precise equations that best describe its behaviour.

The main purpose of transistors is to control the flow of current from one node based on the
potential at another node: by controlling voltage, you control current. Once again, let’s start with
some fluid analogy to build intuition on the transistor.

3.1.1 Understanding the transistor idea with Hydraulic Analogy

Figure 25: Water analogy to understand the transistor. Water in a reservoir (source) separated
from another bit, called the drain by a gate. We can open the gate by lifting the upper part, to
a certain height, which will influence the current flow. Yassine’s drawing, inspired by a bunch of
drawings I saw online.

I never managed to find the right drawing for what I was trying to convey, so I drew my own.
Things are pretty self explanatory on the figure: there is water in some sort of reservoir, that we
can call source, and no water in the drain. Let’s imagine that the water in the source doesn’t
run out, i.e. each molecule that eventually flows out is brought back through some external supply
not represented here - so h stays fixed. Now, remember from chapter 0 that because water is at
a certain height h compared to the ground (where the drain is), there is some potential difference

42



between the source and the drain - this is a very important point. There is also separation between
the source and the drain, called the gate. We can now bring some energy to open this gate (as it
needs to be lifted - I know my drawing isn’t great, but just imagine you need to lift the upper part
to open the gate) and open it up to a certain level d. The level at which we open it will determine
the extent by which water flows from the source to the drain. Now imagine that the drain gets
full up to the same level as the source - even if the gate is opened, there is no net flow between
the source and the drain. So we need both an opening of the gate AND a potential difference
between the source and the drain in order to generate flow.

The way we open the gate also has an impact on the way water flows. Imagine that d is
small compared to h, then you have a small flow. The more you open the gate (increasing d),
the more things flow. The water flow (in our analogy) is exponentially dependant on the gate
opening. But if we open the gate to some high d ≥ h, well water flow does not really depend on
d anymore34! Past this threshold, the gate is opened and water flows independant of how much
bigger our opening is.

It should be clear the kind of dynamics that we’re trying to put in evidence here: when we
have a potential difference between the source and the drain, water wants to flow. This water will
flow if we open the gate, and the nature of the flow will change depending on how large the gate
opening is. This is the basic idea of a transistor.

One thing that needs to be added to the analogy: water evaporates. It is possible when the
gate is open that water from the drain gets into the source, but this is in such small quantity
that it is often negligible - though it is still there! The higher the potential difference between the
source and the drain, the lower the chances that water evaporates from the drain to the source.
This is the idea of forward and reverse flow, which is important in transistors as we will see.
When the potential difference between source and drain is high, forward flow is overwhelmingly
dominant, when the potential difference is very small, the reverse flow should also be considered
to some extent, in particular conditions.

3.2 MOSFET Structure and basic function

The purpose of this section is only to apply the hydraulic intuition to the transistor, by studying
its structure and basic function. The details of the operation of transistors are significantly more
complex than what we will cover here, and most of the necessary functional details will be covered
in the next section.

34Remember that there is a constant supply of water in the source so that h stays constant
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Figure 26: Essential structural and schematic description of the two transistor type: the pFET
and nFET. On the left, structure. In the middle, circuit schematic. On the right, principle of the
3 operating points. Adapted from lecture notes

There are two distinct types of MOSFETs: the pFET and the nFET. While they use the same
principle of operation, some basic differences should be noted. There exists also other type of
practical operation differences that we will look at later.

Both the pFET and the nFET have 4 terminals. That is, they both possess a source, drain,
gate and bulk. The source and drain are pieces of doped silicon - p-type doped in the case of
pFETs and n-type doped in the case of nFETs. You can see in the schematic p+ and n+ for
the source and drain terminals, with the + indicating the doping concentration. Typically, both
source and drain have the same doping concentration, but more on this later. In both the pFET
and nFET, the source and drain are in contact with a bulk, well or substrate (take them as
representing the same thing for now) of opposite type. That is, the n-type doped silicon source
and drain in an N-FET are in sitting on p-type doped silicon well. This should ring a bell: we’re
dealing with PN-Junctions!

We do not want to have current flowing from the the source and/or drain to the well, we
actually want it to stay still (for now) - so we reverse bias the PN-Junction! That is, in a nFET,
we apply a lower potential on the p-well then on the source and drain, and vice verca in a pFET
35. You should see clearly why this yields a reverse bias function, and a subsequent depletion
region. 36

Now what about the gate? The gate is a piece of conducting metal, and it is separated from
the source, drain and well with a gate oxide. This is an insulator material. This should also
ring a bell: conductive materials separated by an insulator - we’re dealing with some capacitor -
a MIS capacitance structure!!

On the nFET diagram, you may have noticed ”source/drain” on both terminals. This also
holds for the pFET. Essentially, the transistor is a perfectly symmetric device, and both terminals
can be used as source or drain. Now let’s look at what exactly is the difference between source
and drain.

35No potential difference between source and well is actually okay, so you either need lower (or higher in the case
of pFET) potential differerence or no potential difference at all to keep this reverse bias.

36If you don’t see this clearly, I suggest reviewing the section on PN-Junctions, as well will continue building
from this in the next bits!
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Source and drain: what’s the difference? Remember from the hydraulic analogy that our
source and drain of water had some potential difference. This is exactly what happens in the
transistor, and this potential difference will determine what is the source and what is the drain.
Things have the same logic, but in reverse, for the pFET and nFET: this is showed on the right
hand side of figure 26. In an pFET, the source is at the node at the highest voltage. We call
this Vs for source voltage. The drain voltage Vd is at a lower potential. Remember that this is
not the same as the doping concentration. If we choose to apply the highest voltage on the right
terminal of the pFET, this becomes the source and the other becomes the drain, and vice versa.
Again, it is symmetric and its operation depends on the voltage difference between the source and
drain. This voltage difference has a specific name: drain to source voltage, and is note Vds it is
simply the difference between the two: Vd−Vs. In the case of the nFET, it’s exactly the opposite.
The source is at the lowest potential and the drain at higher potential. This should make sense
intuitively: in a pFET, charge carriers are positive holes, there are more present in higher voltage
points, which thus make them the source - they travel to the drain at lower potential. In a nFET,
charge carriers are negative electrons, there are more electrons in the lower voltage points, which
thus make them the source - they travel to the drain at higher potential.

Circuit diagram Both diagrams of the pFET and nFET are built around the same structure,
except that the pFET has a small circle between its gate and the line. This symbolizes the holes,
as opposed to electrons, which are the charge carriers in a pFET (as the source and drain are
p-type doped silicon).

The gate Now that we conceptually explained the difference between the source and the drain,
we need to look at the gate. Remember from the hydraulic analogy that the gate is what controls
the flow of water, provided we have a potential difference between the source and the drain. The
same principle applies in transistors. The dynamics are best understood schematically - and keep
in mind that this is just to build an intuition!

Figure 27: Basic principle behind current flow when applying gate voltage. This drawing is NOT
completely physically accurate - it only serves the purpose of giving you an intuition of how current
flows in a transistor. Yassine’s drawing, adapted from a few figures in the lecture notes.

Disclaimer: This drawing isNOT completley physically accurate - it only serves the purpose of
giving you an intuition of how current flows in a transistor. Anyways, let’s look at it to understand
how transistors work. I drew a N-FET with a Vds of 1V - so potential difference between the source
and drain is present. We now apply a gate voltage Vg = 0.5V . Because of the positive voltage, we
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have a positive charges that accumulate on the gate. This naturally repels the positive charges on
the p substrate (because alike charges repel each other) and creates some kind of corridor virtually
of positive charges, where negative charges start to accumulate. This corridor suddenly allows a
flow of charges through diffusion between the source and the drain as we have a significant drain
to source potential difference, and thus a current. This is because, in this region, we are not
anymore in a standard equilibrium PN Junction configuration anymore. This region, drawn in
orange on the figure is the depletion region. This is grossly what happens when current flows.
Now in reality, we must go back to our previous explanations on MIS capacitance, and we’ll see
that the nature of the flow is different if we are in the depletion regime or the inversion regime.
In the depletion regime, current is driven by diffusion, whereas it is drive by electric field in the
inversion regime. More on this in the following sections.

3.3 Understanding Sub-threshold Current using Boltzmann Distribu-
tion (Written by Wencan Huang)

Figure 28: An illustration of a nFET transistor without attaching external voltage to its terminals.
And case A and case B help explains how depletion region between highly doped n type node with
p well is formed, and what properties it has, e.g., electrical field and energy potential. The
depletion region is then oversimplified to be considered as have exactly no free charge carriers for
further calculation. Figure drawn by Wencan Huang

nFET transistor without connecting to voltage supply Without loss of generality, de-
tailed physics and math expressions are deliberately omitted and any curious readers can refer
to semiconductor physics textbook or the Caltech online courses. Knowing nothing about those
details is totally okay for succeeding in this course, however, it is necessary to understand the
general idea presented in this section.

When there are no external voltage difference attached to nFET transistor’s terminals, the
depletion region between p well substrate and two n type nodes is formed due to diffusion and
reaches equilibrium due to the electrical field formed during diffusion as is indicated in the figure
28 for electrical field in plot Bϵ.

For simplicity, take n type side for consideration and the same analysis can be followed for the
p well side. The diffusion effect on the n type tries to diffuse n type free charge carriers - electrons
- among the whole p-n junction. However, as electrons diffuse into p well side, they will leave
net positive charge in n type side through fixed positive ions which lose valence electrons, and
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cause net negative charge in p well side through contributing electrons to group III element. As a
result, an electrical field is formed counterbalancing the diffusion of electrons towards p well side,
and the equilibrium of diffusion is reached as drawn in figure 28 for concentration of free charge
carriers in plot BC .

Due to the effect as mentioned in the paragraph above, with oversimplified mathematical
models, we assume that within the depletion region, the charge density is constant as shown in
plot BNC . Based on this assumption, we gain the consequent plots for electrical field and energy
potential for electrons. In general, for silicon transistors, the potential gap ϕ0 is around 0.7V.

nFET transistor connecting to voltage supply without considering Vg yet
For neuromorphic engineering I, what we care most is transistor’s operation in sub-threshold

region, i.e., 0 < Vgs < Vthr add the hyperlink to related sections here and ensure the symbols are
consistent. Besides, a nFET transistor is only used with source-p well and drain-p well reverse
biased. And the rest part will only consider under such circumstances.

Figure 29: A illustrates how a nFET transistor is typically used by providing four voltage. B shows
what are typical voltages applied for neuromorphic usage (note: for sub-threshold, Vgs < Vthr) .
Case C compares how depletion region properties changes when the p-n junction is reverse biased
without considering the effect of Vg in solid line with case B in dashed line. Figure drawn by
Wencan Huang

Figure 29 demonstrates how nFET transistors are connected to different voltage in general
and illustrates how depletion region changes upon voltage difference acting on drain or source.
To understand step by step, case C deliberately ignored the effect introduced by Vg through a
simplification assuming that Vg = 0V . In this case, the p-n junction between highly n doped drain
and p well is reserve biased, which expands the depletion region. While since the p-n junction
between source and p well has no voltage difference, its situation is the same as in case B.

The properties changed for p-n junction between drain and p well is shown in the four plots,
and one important information is that the energy potential for electron in drain is dropped exactly
by the supplied voltage Vd. And this is because that it is this supplied voltage expands depletion
region when there is no external voltage applied, and thus the potential change for electron should
be exactly the same value. And recalling the potential gap ϕ0 introduced in figure 28, the energy
potential gap between drain and p well now becomes ϕ0 + Vd.
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nFET transistor connecting to voltage supply considering Vg
To discuss the effect due to gate voltage, it is necessary to understand the effective capacitance

due to depletion region. More mathematics can refer to later sections. add the hyperlink to related
sections here and ensure the symbols are consistent.

Figure 30: A illustrates how a nFET transistor is affected by Vg as a capacitor. The hole concen-
tration in the first plot changes linearly in log scale according to diffusion - drift balance just as
in figure 28. And the energy potential for electron in the third plot is along the negative direction
with ϕs defined as positive. Figure drawn by Wencan Huang

Along the direction of vertical section, from gate to p well as shown in figure 29 B without
considering drain and source, nFET transistor in this case can be considered equivalent to two
serial capacitor - one constant capacitor due to the insulator layer, and one causal capacitor due
to Vg.

As is shown in three plot in figure 30, the hole concentration in p well can be considered to
change exactly the same as in p-n junction in figure 28. With the same simplification as in case A,
we can consider the charge density within the depletion region are exactly the same. As a result,
this causes a gradual linear change in electrical field through the depletion region, which in terms
gives a parabolic change in energy potential, which gives ϕs ∝ ∆d2, i.e., ∆d ∝

√
ϕs.

However, currently we use the term ϕs without identifying what this term is. As is demon-
strated by the figure of two capacitor, ϕs, surface potential refers to the potential for electrons
just below the insulator, and its value is mutually determined by Vg and Cdep which is caused by
Vg.

And using the model of two capacitor without considering the change in ∆d and Cdep, the

change in Vg and ϕs should satisfy: Cox(Vg −∆ϕs) = Cdep∆ϕs, which gives
dϕs
dVg

=
Cox

Cox + Cdep
.

Since when Vg = OV , ϕs = OV , and for subthreshold region ∆Vg is small, we can assume that

ϕs = κVg with κ :=
Cox

Cox + Cdep
.

In the above paragraphs, we consider how ϕs changes without considering changes in Cdep,
and this only holds when Cdep changes negligibly with respect to changes in Vg or Cox is much
larger. Luckily, such assumption holds true and the reason will not be discussed here.
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Figure 31: Energy potential for electrons in nFET and the potential is defined by energy/q. Figure
drawn by Wencan Huang

As is shown in the plot in figure 31, applying external voltage causes different potential drop
in drain side and surface potential as explained above.

Here we need to introduce a fact that the probability of an electron at a specific energy state
in solid state material is approximated as Fermi-Dirac distribution: F (E) = (1 + e(E−EF )/kT )−1,
where EF is a constant related to material. In general, the term E − EF is large enough so that
the distribution can be simplified as Boltzmann distribution F (E) = e−(E−EF )/kT , and this is
where the exponential term in subthreshold current comes from.

Recall that the subthreshold current is represented as Ids = I0 · eκVg/VT · (e−Vd/VT − e−Vs/VT )
(remember, electron flow is in the opposite direction of current), and link this to section 3.1.1, we
can realize that Vg affects the general change through affecting ϕs and then together with Vd and
Vs, the current is determined.

3.4 Subthreshold Operation

In section 3.2, you were introduced to the structure of both n- and p-type MOSFETs. You were
also introduced to the functionality of the MIS capacitor in the previous chapter. Let’s finally
have a look how to actually generate a current with a transistor. Remember from section 2.3,
that our MOS capacitor has four different operation modes: accumulation, flatband, depletion
and inversion. The modes we are interested in are depletion and inversion.

3.4.1 Prelude: Drift and Diffusion Current

The current that is generated in depletion mode is caused by diffusion and we say that we operate
in the subthreshold or weak inversion regime. On the other hand, the current generated in inver-
sion mode is caused by drift and we say that we operate in the superthreshold or strong inversion
regime. Let’s recap what exactly drift and diffusion currents are.

A drift current is caused by an applied electrical field. The field’s electrical force defines the
strength and direction into which charged particles are pulled. As equally charged particles repel
each other and are attracted to opposite charges, negatively charged particles are pulled towards
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Figure 32: The concept of drift (left) and diffusion (right) current. Adapted from Lecture Notes.

the more positive side of the field and vice versa. Due to the generated movement of charges, we
get a current. This current is defined by the following equation:

I = qnµϵ (14)

where q is the electron charge, n the carrier density, µ the carrier mobility and ϵ the electrical
field. This mechanism is also visualized in Drift subfigure. An electron is pulled towards a point
with lower electron energy, i.e. voltage. On the other hand, a hole is pulled towards a point with
higher voltage. The slope corresponds to the electrical field ϵ.

A diffusion current is caused by a difference in concentration. We experience diffusion on a daily
basis, for example when dipping our tea bag into hot water and seeing it spread or when watching
the smoke of a nearby factor that diffuses into the air. Diffusion describes the movement from a
region of higher concentration to a region of lower concentration. In our case, this movement of
charged particles generates a current which can be described as follow:

I = −qDdN
dz

(15)

where q is the electron charge, D the diffusion constant and dN
dz the concentration gradient.

The higher the concentration difference, the higher the resulting current. The concepts of diffusion
is also visualized in the diffusion subfigure.

It is important to note that in both regimes diffusion and drift current occur. However, in
subthreshold the electric field is so weak that it can be neglected next to the diffusion current and
vice versa. As you have seen previously, the mode we operate in depends on our gate voltage and
we switch from the sub- to the superthreshold regime once our gate voltage crosses a threshold
voltage at which point electrons become the majority carriers assuming a p-type channel.

3.4.2 Let’s start deriving equations

Let’s have a look at our MOSFET when we don’t apply any gate voltage. For the following
derivations we assume an n-type MOSFET. Remember that an nFET consists of a p-type body
and an n-type source and drain. Figure 33 visualizes an nFET transistor and its conduction band
Ec. At the contact points between the n-type source and drain with the p-type body, we have a
pn-junction. As introduced in section 2.2, the conduction band of the p-type has a higher electron
energy than the conduction band of the n-type. This energy difference creates a barrier between
the source and the drain that prevents any current from flowing. We denote this energy difference
the built-in potential Θ0. It is the energy an electron requires to move from the n- to the p-type.

What happens to our energy barrier as soon as we increase the gate voltage? The positive
charge at the gate repels the free holes in the p-substrate and a region with only fixed negatively
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Figure 33: nFET MOSFET structure and its corresponding conduction band.

charged ions, the depletion region, remains. As introduced in section 2.3, the charge of this region
is defined by its surface potential ψs. By adding an external voltage to the p-type, we lower its
conduction band and therefore decrease our energy barrier. On the other side, remember that our
source and drain are also connected to an external voltage Vs and Vd. These allow us to change
the conduction band of the n-type source and drain, and consequently the energy barrier, as well.
We can therefore describe the height of the energy barriers at the source and the drain as follows:

Θs = Θ0 − qψs + qVs = Θ0 − q(ψs − Vs) (16)

Θd = Θ0 − qψs + qVd = Θ0 − q(ψs − Vd) (17)

We assume that the surface potential ψs along the channel is constant. Note that Vs, Vd ≥ 0
in order to keep our transistor reverse biased, so we cannot simply add a negative voltage to our
source and drain to decrease the energy barrier. The height of the energy barrier determines how
many electrons can diffuse from the n-type to the p-type channel. The electron densities at the
edges of the p-type channel can be described by the following equation:

Ns = N0e
−Θs/kT (18)

Nd = N0e
−Θd/kT (19)

As expected, the carrier density increases exponentially for a decreasing energy barrier. It
should be clear now why we need Vd > Vs for a current to flow. If Vd = Vs, Nd = Ns and
there is no change in carrier concentration across the channel and hence no diffusion current. For
increasing values of Vd, we increase the energy barrier on the drain side of the channel which
leads to smaller concentration of electrons. The concentration gradient between the source and
the drain can simply be described by:

N

dz
=
Ns −Nd

L
(20)

where L is the length of the channel. In a semiconductor, the diffusion current is given by:

I = −qWtDn
dN

dz
(21)
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where Dn is the diffusion constant, W the width of the channel and t the depth of the channel.
By inserting the retrieved formula for our concentration gradient, we finally get the equation for
our subthreshold current:

Ids = −qW
L
tDn(Nd −Ns) = −qW

L
tDne

ψs
UT (e

−Vd
UT − e

−Vs
UT ) = I0e

ψs
UT (e

−Vs
UT − e

−Vd
UT ) (22)

where I0 = qWL tDnN0e
−ψ0
UT is the so-called leakage current. Leakage current is current that is

always there, despite you not wanting it to be there - it’s a physical reality as you always have
electrons going around. It can be easily extracted in an experimental setup by setting the voltage
difference between the gate and the source to zero, i.e. Vgs = 0, and measuring the remaining
current. The problem with (22) is that it depends on the surface potential ψs that we cannot
directly control. However, as introduced in section 2.3, ψs is related to the gate voltage g via:

∆Ψs
∆Vg

=
Cox

Cox + Cdep
:= κ (23)

Substituting this relationship into (22) yields the important equation:

Ids = I0e
κVg
UT (e

−Vs
UT − e

−Vd
UT ) (24)

We denote the current Ids as the current flow from the drain to the source. Note that cur-
rent flows in the opposite direction of the electrons. When rewriting (24), we see that the
subthreshold current Ids actually consists of two components: the current from the drain to the
source of the transistor, the so-called forward current, minus the current from the source to the
drain of the transistor, the so-called reverse current.

Ids = I0e
κVg−Vs
UT − I0e

κVg−Vd
UT = If − Ir (25)

We can further rewrite the current equation as follows:

Ids = I0e
κVg−Vs
UT (1− e

−Vds
UT ) (26)

where Vds is the voltage difference between the drain and the source Vd − Vs. We can see that
for large values of Vds, the reverse current of the equation eventually becomes negligible. When
this happens, we are said to operate in the saturation region. The regime in which both the
forward and the reverse current shape Ids is called the triode, linear or ohmic region. The point at
which we move from the linear to the saturation regime is approximately at Vds = 4UT ≈ 100mV .
The relationship between Vds and Ids is also visualized in figure 34 for different values of Vgs. Note
that all values of Vgs are in subthreshold and it only influences the strength of the resulting current.

Let’s sum up the equations we derived for an nFET transistor in the subthreshold regime.

Subthreshold nFET Ids current

• Triode/ Linear/ Ohmic Region

Ids = I0e
κVg−Vs
UT (1− e

−Vds
UT ) = If − Ir (27)

• Saturation Region

Ids = I0e
κVg−Vs
UT = If (28)

In the saturation region the reverse current is so small that we typically omit it. This
mathematically makes sense as the Vds component is a lot smaller than the Vgs component,
thus vanishing in the equation. Typically, we start considering that we are in saturation
starting from Vds > 4UT . This is very important!
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Figure 34: Relationship between the drain-to-source voltage Vds and the current Ids.

Note in the very important figure 34 the following things:

• Current grows linearly in the Ohmic region

• Current is pretty much constant past the Vds > 4UT (this is not exactly true, as we will see
in a later part with the Early Effect).

• The shape of the Ids vs Vds is the same when we have different gate voltages - as long as
we keep in Subthreshold!!!!

3.5 Superthreshold Operation

When we continue to increase the gate voltage, we attract more and more free electrons to the
surface of the channel. Once they become the majority carriers in the channel, the channel becomes
n-type and is said to be inverted. We operate in the superthreshold, or above-threshold regime.
In the superthreshold regime, the electrical field becomes so strong that it is the main cause for
the current flow and makes the previously calculated diffusion current negligible. Remember that
the drift current caused by an electrical field is determined by the following equation:

I = qnµϵWt (29)

where q is the electron charge, n the carrier concentration, µ the mobility of electrons, ϵ the
electrical field and W and t the width and the depth of the channel respectively. In the previous
section, we have seen that the charge Qi that accumulates in the inversion region of our channel
is dependent on the channel’s MOS structure.

Qi = Cox(Vg − VT ) (30)

We can express our charge concentration qn in terms of Qi.

qn =
Qi
t

(31)

Note that Qi is the inversion charge per unit area. For simplicity we assume that our electrical
field is constant. We can therefore simply express ϵ by the voltage difference across the channel.

ϵ =
Vd − Vs
L

(32)
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Figure 35: Relationship between the gate voltage Vgs and the current Ids for small values of Vds.

where L is the length of the channel. Substituting these relationships into our equation for the
drift current (29) yields our current equation in superthreshold.

I = Cox(Vg − VT )µ
Vd − Vs
L

W = β(Vg − VT )(Vd − Vs) (33)

where β = µCox
W
L . Assuming that β and Vds are constant, we can see that there is a linear

relationship between the current Ids and the gate voltage Vgs. This relationship is also demon-
strated in figure 35.

Effective Threshold Voltage

In order to switch between the sub- and the superthreshold regime, we have to increase our gate
voltage until it crosses a specific voltage value, the threshold voltage VT . So far, we have assumed
that VT is a fixed value, however in reality this is not the case. When we increase the source
voltage, hence decreasing the voltage difference Vds, our current decreases as a consequence of the
increased energy barrier between the source and the channel. How much do we have to change
our gate voltage to retrieve our original current? An increase of Vs can be counter balanced by
an increase of ϕs. For ∆Vs = ∆ϕs, our energy barrier, and hence the generated current, remains
the same. Remember that ∆ϕs

∆VG
= κ, so we have to increase our gate voltage by a factor of 1

κ
more than the source voltage. But what does this have to do with the threshold voltage? At the
threshold point, electrons become the majority carriers in the channel. These mobile electrons
are mainly attracted from the source. For increasing Vs, we therefore have to increase our gate
voltage by the factor of 1

κ more in order to attract enough free carriers to invert our channel. The
actual, effective, threshold voltage is hence dependent on the source voltage.

VT = VT0 +
Vs
κ

(34)

Let’s have a look at our channel again. We have previously assumed that the inversion charge
Qi is constant along the channel. In reality, it decreases from its highest concentration at the
source end to its lowest concentration at the drain end. The charge is dependent on the threshold
voltage at the channel ends and consequently on the source and drain voltages as given by (34).
For the charge at the source and the drain end we get:

Qs = Cox(Vg − VT ) = Cox(Vg − VT0 −
Vs
κ
) (35)

Qd = Cox(Vg − VT ) = Cox(Vg − VT0 −
Vd
κ
) (36)
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Figure 36: Different channel shapes for different values of Vds [Taken from http://in.ncu.edu.

tw/ncume_ee/harvard-es154/lect_12_MOSFETs.pdf].

So for a constant gate voltage, the charge decreases for an increasing Vs and Vd. As Vd > Vs, the
charge concentration at the drain end is indeed lower just as expected. If we continue to increase
Vd, the charge at the drain end of the channel Qd will decrease until it eventually becomes zero.
The channel is said to be ”pinched off”. Figure 36 demonstrates how the channel shape changes
for different values of Vds. The so-called pinchoff point is the point in the channel where the
inversion charge appears first. The electrons are moved from the drain end into the drain region
by the electrical field between the drain and the channel. The drain voltage, however, does not
influence the current, i.e. the electron movement from the source along the channel, anymore and
Ids remains constant for increasing values of Vds. Similar to the subthreshold regime, we now say
that the current is saturated and that we operate in the saturation region. This happens once
the voltage difference Vds corresponds to the overdrive voltage Vov, so when the charge difference
equals the charge concentration at the source. For simplicity, we assume a fixed threshold value
again and get the following saturation voltage:

Vds,sat = Vgs − VT = Vov (37)

By replacing Vds with Vds,sat, we can define the saturated current Ids,sat .

1

2
β(Vgs − VT )

2 =
1

2
βV 2

ov (38)

The additional factor 1
2 can be explained by a more detailed derivation of the drain current Ids

which does not assume a constant electrical field along the channel. Please refer to the Textbook if
you want to find out more. Figure 37 visualizes the relationship between Vds and Ids for different
gate voltage Vgs.

Special current Is

Finally, let’s define a specific current you should know about: the special current Is. It defines
the border between weak and strong inversion and is particularly useful during designing. It
approximately corresponds to the current at the overdrive voltage Vov = UT .

Is = 2µCox
W

L
U2
T = 2βU2

T (39)

Let’s sum up the equations we derived for an nFET transistor in superthreshold regime.

Superthreshold nFET Ids current

• Triode/ Linear/ Ohmic Region

Ids = β(Vgs − VT )Vds = βVovVds (40)
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Figure 37: Relationship between Vds and Ids for different gate voltage Vgs.

Figure 38: Structure of a pFET MOSFET.

• Saturation Region

Ids =
1

2
β(Vgs − VT )

2 =
1

2
βV 2

ov (41)

3.6 pFET MOSFET

In the previous two sections we introduced how an nFET MOSFET transistor operates in both
the sub- and superthreshold regime. As mentioned in chapter 2, there exists another type of
MOSFETs: the pFET transistor. Remember that in a pFET, the doped substrates are inversed.
The source and the drain contain free holes as the majority carriers and are therefore of p-type.
Both lie within a body with electrons as the majority carriers, the n-well. This n-well is connected
to the highest voltage Vdd. The structure of the pFET is shown in figure 38.

The pFET transistor behaves exactly like the nFET transistor but inversed. What exactly
does that mean? The transistor is turned off when the gate voltage Vg is at the highest voltage
Vdd. As there is no potential difference between the gate and the n-well, there is no surface po-
tential and hence no current along the channel. When we now decrease the gate voltage of the

56



pFET, the negative potential difference repels the free electrons within the n-well at the surface
of the channel and we get a region of fixed positive ions only, the depletion region. As described
in the previous section, the diffusion in this region creates a current Isd. If we further decrease
the gate voltage, free holes eventually become attracted to the channel surface and an inversion
region of p-type is created. Similar to the previous derivations, we get the following equations for
the current in a pFET MOSFET. Note that they are exactly like the nFET equations but with
an inverted sign.

Superthreshold pFET Isd current

• Triode/ Linear/ Ohmic Region

Isd = β(Vsg − |VT |)Vsd (42)

• Saturation Region

Isd =
1

2
β(Vsg − |VT |)2 (43)

Subthreshold pFET Ids current

• Triode/ Linear/ Ohmic Region

Isd = I0e
−κVg+Vs

UT (1− e
Vds
UT ) (44)

• Saturation Region

Isd = I0e
−κVg+Vs

UT (45)

3.7 Bulks, wells and biasing the MOSFET Bulks

Good question. A lot is actually going on, but let’s try to keep it short and simple. Remember
from chapter 0 (which I hope you reviewed!) that voltage is all about potential difference, so
you need ”point of references” that are somewhat common to everywhere in your circuit. It so
happens that in a circuit, all transistors do not necessarily share the same bulk, which is typically
the natural reference potential of MOSFETS. We therefore need a common reference potential
that multiple transistors can have access to: this is called the common bulk potential. There are
two common bulk potentials in a circuit: the lowest (ground) is denoted Vss and the highest is
denoted Vdd. You never want charge carriers from the source/drain of transistor to go into the
bulks (except in very rare scenarios not considered in this course) - to avoid that, source and drain
diodes are reverse-biased to the bulks. To do so, in an nFET, the bulk is typically at Vss and
source will always be slightly higher (or equal) potential: Vs ≥ Vss. This ensures the reverse bias
as we apply a higher potential to the n-doped semi conductor than the p-doped semi conductor it
is in contact with. Same holds in PFET, but in reverse. All voltages in the nFET are referenced
to Vss, which is typically the 0 V and lowest potential (ground) of nFETs - so all voltages we’ll be
dealing with are typically positive. In the pFET, all voltages are referenced to Vdd. Connections
to Vss are marked as connection to ground, and connections to Vdd with a slanting line.

What does that mean for our derived equations? You guessed right, we have yet made another
assumption and omitted our reference bulk voltages. What we are in reality interested in is how
much we change our voltages Vg, Vs and Vd compared to our bulk voltages. Let’s have a look
at our pFET again. Remember that in a PFET our n-well is biased to the highest voltage Vdd
and our transistor is off when our gate voltage is at Vdd as well. In this case, there is no potential
difference between the gate and the n-type channel and therefore our doping concentration equals
our mobile carrier concentration. No current is flowing. When we now decrease the gate voltage,
a depletion and eventually an inversion region is created across the channel. This is dependent on
the potential difference between our gate and channel, i.e. how much our gate voltage now differs
from our bulk voltage. Let’s rewrite the subthreshold equations to incorporate the difference we
are actually interested in:
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• For the subthreshold NFET in saturation:

I = I0e
κ(Vg−Vss)−(Vs−Vss)

UT
(46)

• For the subthreshold PFET in saturation:

I = I0e
−κ(Vdd−Vg)+(Vdd−Vs)

UT
(47)

Great, so now you know how the bulk voltage modifies our generated current. However, we
usually omit Vdd and Vss in our equations for simplicity but it is important to know that they are
our reference points. As you will see later on in the section on the pFET source follower, in some
cases it actually might be beneficial to set them to a value that differs from Vdd or Vss.

3.8 Transistor Conductance

Transistors, like any piece of electronics, have some kind of inherent conductance. In Transistors,
conductance corresponds to the differential change in current due to differential change in each
of the terminal voltages. We there can distinguish between different types of conductances. The
source, drain and gate conductance can be defined, both in subthreshold and in superthreshold
regimes. We will here only focus on Subthreshold regime and without getting into derivation
details which are just the derivatives, we reach:

• Gate conductance:

gmg =
∂I

∂Vg
=
κI

UT
(48)

• Source Conductance

gms =
∂I

∂Vs
=
I0e

κVg−Vs/UT
UT

(49)

• Drain Conductance

gmd =
∂I

∂Vd
=
I0e

κVg−Vd/UT
UT

+
1

VE
(50)

We will look at Early Voltage VE in an upcoming section.

There are also other type of conductances, which we will look at when reaching circuit. Mainly,
there is the the transconductance, which relates output current to input voltage gm = ∂I

∂Vin
.

There is also the output conductance gds = ∂I
∂Vds

. We’ll look at these in dedicated sections. All
you should remember for now is that transistors have conductances which relate the differential
change in current produced with the differential change in various type of voltage applied.

3.9 Second Order Effects

In the derivation of the current-voltage characteristics of the MOSFET, we assumed that certain
properties are constant under all operating conditions. These ideal assumptions do not apply in
a real device. Some examples of the non-idealities in a MOSFET are described here.

3.9.1 Prelude: How transistor width and length impact operation

Remember that both the sub- and the superthreshold current are scaled by a parameterized factor:
I0 and β where

I0 = q
W

L
tDnN0e

−ϕ0
UT (51)

β = µCox
W

L
(52)
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Both factors are dependent on the ratio between the transistor’s width and its length W
L .

This is an important condition to consider when designing MOSFETs. Simply looking at this
condition, it seems desirable to keep our transistor length as small as possible in order to get a
power efficient transistor. In reality, the length of the channel defines the impact of second order
effects onto our generated current flow and it is typically desired to have a longer channel. An
ideal width to length ratio is therefore a very tricky design decision. The following sections will
introduce the most important second order effects and in particular how they are shaped by the
transistor’s length.

3.9.2 Transistors in real life, and the problem of mismatch

You may have heard of Moore’s law?37. The observation is named after Gordon Moore, the co-
founder of Fairchild Semiconductor and Intel (and former CEO of the latter), who in 1965 posited
a doubling every year in the number of components per integrated circuit. The fundamental
component of the integrated circuit is the transistor - so this implies that transistor are supposed to
halve in size every year! Due to extremely fancy industrial processes, the smallest transistors today
are as small as a few nanometers length (length from source to drain). We’re now reaching the
physical limits of Moore’s law as the transistor has a theoretical minimum length, and it wouldn’t
function the same way if we ever manage to make it smaller. Besides this issue, we should note
something: transistor function is impacted by their sizes. There are many second order effects that
are typically omitted in the modelling because they are negligible, however, because we’re dealing
with the limitation of the physics, these second order effects become important. We’ll look at these
in more details in the next chapter, but what I’d like you to remember is the fact that a difference
in size of 1 mm between two Ikea shelves will not matter when you build your piece of furniture,
because 1mm is negligible compared to the overall size of the shelf. However, if you have a 1cm
difference, it might start to be a problem. Similarly with the transistor, because we’re dealing with
extremely small components, and because the industrial processes cannot realistically be precise to
the 10−12, you always end up with slight size differences between the transistors within a circuit,
which lead to some differences in the way they function, and is the source of many limitations in
modern VLSI. This problem is name transistor mismatch and it is going to appear very often
in your lab plots, as you will see when you start experimenting with the Class Chip.

3.9.3 The Early Effect

Very, very important thing to start with: it’s named after James Early, and is not related to
being early, late or anything time related. I wanted to mention it first because to this day I
unconsciously picture it as something happening before something else. The lecture notes state:
”When deriving the I-V (Current-Voltage) characteristics of nFETs in the previous chapter, we
assumed that the current is constant when working in saturation (Vds > 4UT ). It so happens
that this assumption is not sufficient, especially with short length MOSFETs, for which the drain
voltage can modulate the channel current, even in saturation.” So what is exactly happening here?
Let’s start by reminding ourselves the (nFET) relationship and the theoretical graph linking drain
current Ids to drain to source voltage Vds for fixed Vgs:

Ids = In0e
κnVg
UT (e

−Vs
UT − e

−Vd
UT ) (53)

We also should look at the graphical relationship this relation implies:

37Moore’s law was actually a term coined by Carver Mead!
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Figure 39: Relationship between Vds and Ids for fixed Vgs. Determines the voltage at which we
switch from Ohmic to Saturation region. Adapted from Lecture Notes.

One should notice in the equation and that Ids has an almost insignificant dependence on Vds,
because of the exponential term, where the term in parenthesis just vanishes to Vs as Vd (and
thus Vds) increases. We consider this to start being true when Vds > 4UT , where we go from the
”Ohmic” Region to the ”Saturation region”. This is clearly apparent in figure 39, where changing
Vds does not affect Ids past the 4UT threshold - thus yielding a constant relationship between Vds
and Ids past the threshold (again, taking Vgs as fixed).

Now surprise surprise, this model is not correct in practice. This is called the Early effect,
and basically introduces the practical problem of slightly rising Ids when increasing Vds, even past
the the saturation threshold. This rate of change is critically impacted by the geometry of the
transistor, mainly its W/L ratio. Effectively, when increasing Vd, the effective length Leff of the
transistor decreases. This is because the pinchoff region extends further along the channel away
from the drain (see figure below). This has a particularly important impact when we are dealing
with short transistors, as the shift in pinchoff is, relatively to the channel length, more important
(see figure 40).
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Figure 40: The effective channel length Leff of a transistor operating in the above-threshold
saturation region decreases with increasing Vd because the pinchoff point moves into the channel,
away from the drain. The effective channel length can be described by the transistor length minus
the length of the pinchoff region in the channel. Adapted from Lecture Notes.

Ok great. So what do we do with this information? Well now we need to find a way to quantify
this effect and include it in the previous equation to have a more accurate model. For this, we
need to use the Early Voltage and the following relations:

Figure 41: Plot of current versus drain-to-source voltage, showing the slope of the curve gds in
the saturation regime. The intersection of the slope with the Vds axis is called the Early voltage.
Adapted from Lecture Notes.

We just established that even in Saturation, there is a slight increase in Ids as a function of
increasing Vd - this increase is linear as shown in the figure above, and it has a very specific slope
called gds, also called the output conductance of the transistor. It is defined as follows:

gds =
∂I

∂Vds
=

∂I

∂Leff

∂Leff
∂Vds

=
I

Ve
(54)

Ve is the Early Voltage, which is defined as the absolute value of voltage for which Ids
is 0 when in saturation. It is only a theoretical voltage that allows you to quantify the
steepness of the Ids slope in saturation, and thus the extent by which Ids changes
as a function of Vds changes. Understanding the precise derivation of the equation requires
a substantial amount of device physics, which is out of the scope of these lecture notes. If you
would like to understand better, refer to the Textbook, Chapter 3. Now accepting equation 54 as
true, we can rewrite our equation for drain current in a more complete manner, as follows:
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I = Isat + gdsVds = Isat(1 +
Vds
Ve

) (55)

Here, Isat = In0e
κnVg−Vs

UT Should you really care about this second order effect? Yes, because
VE ranges between 750V and 20V for typical transistors operating in Subthreshold, as shown in
the figure below:

Figure 42: Early voltage versus the transistor length of an nFET fabricated in a 0.8 µm CMOS
proces. Adapted from Lecture Notes.

Keep in mind that 20V is a way more significant Early Voltage than 750V, because that equates
to a lot steeper slope! This is why Early Voltage is particularly important in shorter MOSFETs:
a slight change in Vds will have significant impact on Ids when in Saturation! The smaller the
transistor, the smaller VE , and the smaller VE , the higher ∂I

∂Vds
.

3.9.4 The Body Effect

The Body Effect, also called the Back Gate Effect relates to the bulk and its influence on transistor
operation. In the I-V (Current to Voltage) equations that we have derived so far, the terminal
voltages of the transistor are referenced to the bulk. However, the bulk is also an input to the
transistor that should be considered in most circumstances, though we often chose to neglect it
for simplicity. In the subthreshold region, we can describe the influence of the bulk potential Vb
through the series of capacitors Cox and Cd (as we saw also for the gate input). The effect on the
surface potential can be written as:

∂ψs = (1− κ)∂Vb (56)

In the strong inversion, or above-threshold, regime the influence of the bulk voltage is usually
treated as an increase in the threshold voltage of the transistor. If Vb decreases, then there is
practically no change in the gate charge because the voltage across the gate oxide is essentially
unchanged (the surface potential remains approximately the same). However, the depletion region
underneath the gate increases 38. Since the negative charge from the depletion region is now larger,
less charge is required in the inversion region to balance the gate charge. The inversion region
becomes smaller, so leading to a smaller I. To restore I to its original value, we increase the gate
voltage Vgs. Assuming that we do not forward the PN junctions between the drain/source regions

38Remember from the PN Junction that increasing the reverse bias across a PN junction causes the depletion to
increase
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Figure 44: Varying surface potentials (left) and I-V curve (right) for different drain voltages due
to Drain Induced Barrier Lowering (DIBL).

and the bulk: What happens if the bulk voltage Vb is increased by ∆V ? This scenario is the same
as decreasing Vg, Vs, andVd by the same ∆V . In the subthreshold region, the change in ψs will now
be −κ∆V . The barrier height is decreased at both ends of the channel, and the current increases.
Hence, the bulk acts like the gate, but it has a weaker influence on the transistor current.

3.9.5 Drain Induced Barrier Lowering (DIBL)

In the below threshold regime there is a potential barrier between the source and the channel
region. The height of this barrier is a result of the balance between drift and diffusion current
between these two regions. If a high drain voltage is applied, the barrier height can decrease, as
indicated in figure 43, leading to an increase in the surface potential ??, which then also leads to
an increased drain current as shown in figure ??. The precise derivation of this barrier lowering
effect is more complicated and not part of this course, you just have to know, that it exists.

Figure 43: Varying energy barrier for different drain voltages due to Drain Induced Barrier Low-
ering (DIBL).

To summarize, Drain Induced Barrier Lowering means, that the drain current is controlled
not only by the gate voltage, but also by the drain voltage (although rather weakly), because
a higher drain voltage decreases the energy barrier between source and channel. It is especially
pronounced in small width transistors, as there the drain can influence the source more easily.
Since this parasitic effect simply shifts the current up or down, it can be accounted for by a
threshold voltage reduction depending on the drain voltage for device modeling purposes. Large
drain voltages typically decrease the threshold voltage Vthr by ≈ 100mV .
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3.10 Impact Ionization

Finally, large drain voltages can lead to another effect called Impact Ionization. This simply
means, that when the drain voltage is very high, it can give the incoming electrons enough kinetic
energy, such that, when they bump into other bound electrons (in the valency band), the impact
transfers enough energy to free them and elevate them into the conduction band, which leaves a
free hole in the valency band, thus creating a new energy-hole pair (figure 46). You can picture
this as the drain acting similar to a vacuum cleaner that sucks the electrons in and the higher
the voltage, the higher the power of the vacuum cleaner and the faster the electrons get sucked in
hence the more kinetic energy they have and if they have enough energy they knock the bound
electrons out of their bound state upon impact. The newly created electrons are naturally also
affected by the drain voltage and hence also sucked in. As a result, the drain current becomes
even larger than the source current (as seen in figure 46.

Figure 45

We do not go into detail of the above mentioned drain effects (DIBL and Impact Ionization)
but it is important to know that our derived equations neglect several phenomenons that occur
in real transistors.

Figure 46
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3.11 Concluding thoughts on Subthreshold Regime

In Neuromorphic Engineering 1, we pretty much only focus on Subthreshold equation because they
exhibit exponential voltage to current relationship, just like the biological neurons. It also happens
that using subthreshold operation is low power compared to above threshold, as the applied gate
voltages are significantly lower. However, this comes at a price, because of the exponential ∂I

∂Vg

relationship, we have low stability and noise yields to a lot more problems than above threshold
dynamics, which are typically a lot more stable. There is a lot more to say about this, and
hopefully I’ll have the time to come back to it and add some details.

3.12 Laboratory : Transistors above threshold

As you have understood from reading the theory, current flows through drift and diffusion.
In this section, we will study p-type and n-type transistors when drift is the dominant driver

of current.

3.12.1 Voltage threshold and Beta

To find a current dominated by drift, we should look to a gate voltage that is higher than a certain
threshold. That’s why drift or strong inversion is also described as above threshold operation. It
needs to be above (or below in p-fet) a certain threshold and from there we can extract the current
driven by drift. This should ring a bell 2.

Source and drain are initialized differently depending whether we are interested in the ohmic
or in the saturation region. To study saturation region, the full range of voltage operations is
taken, whereas, in the ohmic region, source and drain voltages should different only slightly (i.e.
0.2 V). This should also ring a bell 2.

We study a range of different gates voltages. Refers to the plot below, to see a real n-FET in
ohmic and saturation region.

If you have something similar to this, well done ! You can basically control electricity with
your fingers.

The finding are very fundamental here. We proved that with a certain source and drain
voltages, and a varying gate voltage, current flows in a transistor following a certain curve. We
realized that the equation are only approximation of reality, but they are good approximation of
reality.

It has been found that for an n-fet, the voltage gate threshold (the point where the current
suddenly increases), was around 0.8V.

Saturation regions start at this index and ohmic regions end at this threshold.
To estimate the real beta from measurement, first, you need to compute the slope of the

curve and then apply some transformation to it (the transformation are derived directly from the
formulas in ??).

Betas in ohmic region has been found to be a float between 2 and 3, whereas in saturation
region they were near 0 .

The betas of a p-fet and an n-fet, the ratio between them should ideally be one. If it’s not one,
but it’s approximately one ( 0.9), then don’t worry, but think : what could be the reason for this
discrepancy?

3.12.2 Early voltage

To measure the Early voltage, in n-fet, you need to vary the voltage gate (similarly as before,
within a range) and vary the voltage at the drain. This way we can get more data and test
whether in reality the Early Voltage is the same with different drain voltages.

You should get something like [Figure].
By fitting a line in the saturation region, you can extract the early voltage. Remember the

definition of Early Voltage in ?? .
You will find there is no single Early Voltage, but the measurements you get should be within

one order of magnitude. Attention, if you measured a voltage gate of 1.8V than the saturation
region will be forced to stay flat by the built in system control, avoid using 1.8V for the gate.
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When the voltage gate goes up the saturation region is less flat and the absolute early voltage
gets bigger.

3.13 Test Yourself

You should be able to answer the following questions for the exam (mainly taken from the winter
study sheet).

• What does it mean for a MOS transistor channel to be accumulated, flat-band, depleted,
inverted?

• Knowledge of how subthreshold transistor operation is a diffusion process and why it depends
exponentially on the terminal voltages.

• What is the meaning of ”saturation”?

• What is the triode or linear operating range?

• Ids vs Vgs on log scale.

• Differences between n- and p-fets.

• Typical values of I0, κ and subthreshold operating range.

• What are wells and how should the wells be biased relative to the substrate?

• What is the ”back gate” or ”body effect”?

• How is the back gate is related to κ?

• How to make a MOS capacitor and what is its C-V relationship.

• How transistors work above threshold.

• What is the linear or triode region and what is the saturation region?

• How do they depend on gate and threshold voltage?

• How the Early effect comes about.

• Typical values for Early voltage.

• How to sketch graphs of transistor current vs. gate voltage and drain-source voltage.

• How above-threshold transistors go into saturation and why the saturation voltage is equal
to the gate overdrive.

• The above-threshold current equations.

• How above-threshold current depends on Cox and mobility.

• What is DIBL (drain induced barrier lowering) and II (impact ionization)?

• How transconductance and drain resistance combine to generate voltage gain and what is
the intrinsic voltage gain of a transistor.

• How transconductance and drain resistance combine to generate voltage gain.
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4 Static Circuits

In this chapter, elementary analog VLSI 39 circuits are introduced. It is critical to be very
comfortable with the dynamics of these circuits to understand the more complex circuits presented
in the following chapters. They indeed are the building blocks of many complex circuits which
will be encountered later. A few things to remember about the circuits presented here:

• Equivalent circuits are obtained by exchanging MOSFET types (from N-Type to P-Type)
and reversing Voltage differences.

• All circuits are derived in steady state. Steady state means that the circuit is in equilibrium
where ”transient” effects are no longer important.

• Unless explicitly stated, all transistors are assumed to be functioning subthreshold. All
these circuits have very different dynamics when working above threshold, which is not the
purpose of the course.

• Second order effects, such as the Early Effect, are neglected. So yes, a lot of what is derived
here works quite differently in practice!

• For simplicity, MOSFETs are assumed to have a unity width-to-length ratio. Because yes,
remember that MOSFET dynamics are affected by their width to length ratio!

Before starting this chapter, one should be fully familiar with the following concepts:

• Electrical Engineering Fundamentals explained in Chapter 0.

• Intuition behind the function of the transistor and how the combination of gate, source and
drain voltage yield different current dynamics.

• Basics principle and equation of transistor operation in subthreshold.

4.1 Single Transistor Circuits

MOSFETS are cool. They really have multiple modes of function with their different ”regimes”,
which allow them to preform several functions. One thing to keep in mind before starting to
look at circuits is that, as a rule of thumb, circuits are always drawn in a way to have the higher
potential on top and the lowest potential on the bottom of the circuit. So you’ll pretty much
always see ground at the bottom and Vdd at the top, hopefully this will help you read through the
circuits more easily.

4.1.1 The Current Source

The simplest function of a MOSFET, it is obtained by holding source, drain and gate voltage at
constant values. As long as the difference between the drain and source voltages is larger than
approximately 4UT , and that Vgs < 0.7V the nFET in saturation and subthreshold reduces
to:

Ids = In0e
κnVg−Vs

UT (57)

Remember from our previous discussion of second order effects (see section 3.9 that this is a
First-Order approximation (i.e., it neglects Second-Order effects such as the Early Effect). This
basically yields the assumption that the drain current is independent of the drain voltage in
Saturation. Note that most often, current source encountered in circuits are pFETs rather than
nFETs.

39VLSI stands for Very-Large-Scale-Integration
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Figure 47: nFET Current Source. Adapted from Lecture Notes.

4.1.2 Linear Resistor

With some calculation and a lot of approximation, we can reach Ohm’s relation, back from the
known Ids equation. This means we have a value that links between voltage and current: resis-
tance. Let’s start with the subthreshlold equation, but without assuming saturation:

Ids = In0e
κnVg
UT (e

−Vs
UT − e

−Vd
UT ) (58)

With some rearranging, we get:

Ids = In0e
(
κnVg
UT

−Vd+Vs
2UT

)
(e

Vd−Vs
2UT − e

−−(Vd−Vs)
2UT ) (59)

Lucky us, the second term looks like a sinh! (As sinh(x) = ex−e−x
2 ). We thus reach:

Ids = 2In0e
(
κnVg
UT

−Vd+Vs
2UT

)
sinh(

Vd − Vs
2UT

) (60)

And here comes the approximation that will please mathematicians: If Vd−Vs is small enough (i.e.,
if we are in the ohmic region), we can approximate the sinh with Taylor Series while neglecting
higher order effects:

Ids ≈ In0e
(
κnVg
UT

−Vd+Vs
2UT

)Vd − Vs
UT

(61)

Now if we freeze Vd, Vs and Vg, our MOSFET suddenly starts acting like a linear resistor with
the following relation:

R =
UT
In0

e
Vd+Vs
2UT

−κn
Vg
UT (62)

I think it’s really sad that I took the time to write all these equations and we don’t even need
to know them by heart. I hope my suffering got you to at least understand the gist of what using
a transistor as a resistor is about. Though there remains an important question:

Why should we bother implementing a resistor with a Transistor instead of just
using an actual resistor?

Good question, and I’m glad you asked. Well in standard CMOS circuits, you’re dealing with
very very small material, and resistors of this size are very unpractical. It also makes it a lot
easier for building purposes, as you don’t need to add another type of components to the circuit -
Transistor can do everything you need! Another important advantage is that we can change the
value of the resistance of the transistor, whereas it is fixed with a physical resistor. Though in
most cases, we use a Transconductance amplifier to implement a resistance, but more on this in
a dedicated chapter!
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4.1.3 Non Linear Current-Voltage / Voltage-Current Converter

Sometimes you really need a Gin-Tonic, but all you have at home for you and your friends is juice.
Conversely, sometimes you really need a nice juice to forget your difficult night out of the day
before, but all you have is Gin left-overs. It would be so convenient if you could easily turn one
into the other? It’s the same in electrical circuits, where you sometimes need voltage for a given
operation, but all you have to give is current, or the opposite. Well, with Transistors, you can
convert a current into a voltage, and vice versa! Remember from ?? that MOSFET operating in
saturation and subthreshold can generate a drain current which is an exponential function of Vgs.
Now if you take a current as the input signal, we can isolate Vg or Vs and make it the output signal.
This was a bit counter intuitive to me at first: we’ve always looked at voltages as the first thing
to apply to obtain current. But it does make sense that if you force a current into a transistor,
the voltage will have to follow in order to satisfy their expected behaviour. In subthreshold, we
can re arrange ?? and isolate Vs or Vg as follows:

Vs = κnVg − UT log(
I

In0
), (63)

Vg = κ−1
n (V s+ UT log(

I

In0
) (64)

4.1.4 Diode Connected Transistors

This one can be tricky at first, and it’s very important to understand it properly.

Figure 48: Diode Connected nFET. Adapted from Lecture Notes.

In this circuit, we connect the gate to the drain: Vg = Vd. This reduces the transistor to a two
terminal device, similar to a diode, hence its name diode connected. Understanding the property
of the circuit is actually simpler with the help of the equations than words. If we go from our full
subthreshold equation 24:

Ids = In0e
κnVg
UT (e

−Vs
UT − e

−Vd
UT ) (65)

we can rearrange as follows by replacing Vd with Vg:

Ids = In0e
κnVg
UT (e

−Vs
UT − e

−Vg
UT ) = In0(e

κnVg−Vs
UT − e

κnVg−Vg
UT ) (66)

Ids = In0e
κnVg−Vs

UT − e
κnVg−Vg

UT (67)

Remember, we love assumptions and simplifications of calculations here. So we keep on as-
suming that κn ≈ 1

Ids ≈ In0e
κnVg−Vs

UT − e
Vg−Vg
UT (68)

and thus reach back the familiar saturation equation:
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Ids ≈ In0e
κnVg−Vs

UT (69)

So now, when a transistor is diode connected, it actually necessarily operates in saturation, it’s
not an assumption anymore (well it always kinda is, but less than before :) ). Now the critical
thing to understand is that the first thing happening here is current flowing into a transistor
(just imagine a current source as described before). The current flowing creates a feedback loop
between the drain and the charge where both automatically adapt to match each other and work
saturation. So the current is what sets the gate voltage! This is very important as it is a clever
way to adjust gate voltage from the current, which is typically not possible as there is infinite
impedance between the channel (source, drain and well) and the gate.

4.2 Two Transistor Circuits

Before you go onto this section, make sure you fully grasp the idea behind the single transistor
circuits.

4.2.1 Current Mirror

Figure 49: Current Mirror. Adapted from Lecture Notes.

In this circuit, the output current is a mirrored copy of the input current. What does this mean?
Suppose both nFETs M1 and M2 1) have the same source voltage, 2) have the same size (so weird
difference due to device mismatch don’t apply) and 3) are in saturation. Remember from the
previous section that the current Iin flowing through the Diode-Connected transistor M1 sets the
gate voltage. You can also see that both M1 and M2 share the same gate voltage. Thus, given the
assumptions taken, we reach a circuit where Iin sets Iout of M2. What’s most interesting is that
we can also scale the output current Iout by setting difference source voltages Vs1 and Vs2, or by
having different transistor sizes. Let’s derive the equation when we have different source voltages:

ForM1 : Iin = In0e
κnVg−Vs1

UT = In0e
κnVg
UT e

−Vs1
UT (70)

ForM2 : Iout = In0e
κnVg−Vs2

UT = In0e
κnVg
UT e

−Vs2
UT (71)

In0e
κnVg
UT =

Iin

e
−Vs1
UT

=
Iout

e
−Vs2
UT

(72)

Thus, Iout = Iine
Vs1

−Vs2
UT , with Gain M = e

Vs1
−Vs2
UT (73)

We can also write the equation for same source voltage but different transistor size, without
going into the derivation we reach:
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Iout =MIin with Gain M =
W2/L2

W1/L1
(74)

P-Type Current Mirror

A common exam question is to draw the P-type equivalent circuits of circuits we’ve learned.
It also turns out that the P-type current mirror will be particularly important when studying the
transconductance amplifier, so let’s take some time to briefly study its behaviour.

Figure 50: P-Type Current Mirror. Adapted from my brain lol.

The P-type current mirror works just like the N-type, but in reverse. In the N-type current
mirror, we diode connect the drain of the first transistor, at higher potential, to the gate, thereby
ensuring saturation. In an PFET, this is the opposite, we diode connect the drain of the first
transistor, at lower potential, to the gate. This tiny difference ends up yielding the exact same
output equation for Iout.

4.2.2 Intrinsic Voltage Gain

In the previously derived current mirror, a gain has been evidenced between the input current
and the output current: that means that we manage to scale the current by a certain constant
value that we have control over when designing our circuit. This is very useful in a lot of different
applications and circuits that will be derived next. It also is very useful to be able to scale voltage!

Figure 51: Intrinsic Voltage Gain with Transistors. Adapted from Lecture Notes.
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The first thing to note in this figure is the current source. We’ve seen them before, but this
one is slightly different: it’s a pFET current source (remember I made a comment about pFET
current source being most often used!). The source voltage Vs is at Vdd and the drain voltage
is Vd. Current flows from positive to negative, so from top to bottom (current, not electrons -
thanks again Benjamin Franklin). Note again that this allows to have a constant current flowing.
We can evalute the gain of this circuit as follows:

Gain A =
∂Vd
∂Vg

=
∂I

∂Vg

∂Vd
∂I

=
gm
gd

40 =
κVE
UT

(75)

The voltage gain is thus set by tweaking κ, Early voltage VE and thermal voltage UT .

4.2.3 Source Follower

Figure 52: Source Follower circuits. A) N-Type Source Follower. B) P-Type source Follower.
Adapted from Lecture Notes.

The source-follower circuit linearly transforms a voltage at a high-impedance input terminal into
a voltage at a lower-impedance output terminal, such that the output signal is able to drive larger
loads than the input signal. It is constructed by connecting a fixed current source to the source
of a MOSFET operated in saturation.

N-Type Source Follower:
In figure 13.A, we can see a N-Type source follower. M2 is the NFET current source and M1 is
the input transistor. The input voltage Vin is applied to the gate voltage of M1 and the output
voltage Vout is the source voltage of M1. In the subtreshold domain, assuming both transistors
are in saturation regime, we can derive the following equations describing the behaviour of the
circuit:

IM1 = In0e
κnVin/UT−Vout/UT (76)

IM2 = In0e
κnVbn/UT−VsM2

/UT = In0e
κnVbn/UT as VsM2

= 0 (77)

Because the two transistors are connected in series, IM1 = IM2, we can therefore reach by rear-
ranging:

Vout = κn(Vin − Vbn) with Vout > 4UT to keep M2 in saturation. (78)

What we get is thus an output voltage which follows the input voltage, and can be scaled with
the gate voltage from the current source that we connect it with.

40We have defined transistor conductance in chapter 3.
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P-Type Source Follower:
In figure 13.B, we can see a P-Type source follower. The logic and objective of the circuit are
pretty much the same as the NFET version, but with a PFETs. M1 is the PFET current source
and M2 is the input transistor. An important difference here is that Vout is connected to the bulk
of M2. Remember from the 3.7 section on bulks, wells and biasing that MOSFETs are typically
biased to Vdd or Vss at their bulk. Here, they are biased to Vout. It is possible to get around the
κ reduction factor in the transfer characteristic, if the bulk potential of the input MOSFET can
be controlled independently. As mentioned previously, in a CMOS process this independence is
possible for only one type of MOSFET: The one that sits in a well with opposite doping from the
substrate.

IM1 = Ip0e
−κp(Vbp−Vdd)/UT (79)

IM2 = In0e
−κp(Vin−Vout)/UT (80)

Because the two transistors are connected in series, IM1 = IM2, we can therefore reach by rear-
ranging:

Vout = (Vdd − Vbp) + Vin with Vout < Vdd − 4UT to keep M1 in saturation. (81)

Notice how we got rid of the κ here, where Vout is now linear with the input. This variation of
the source follower is called a unity gain source follower. What’s the point of this circuit though?
Why would you want to have an output equal to the input? Why should you go through the
trouble of building identity. The reason, according to Giacomo, is to decouple the left side from
the right side. You might have noise, load or capacitance on one side and you don’t want to
influence the rest of the circuit with that and keep it clean. You could also use it, as in the
previous nFET source follower, use it to shift by some value the Vout compared to Vin.

4.3 Three (and more) Transistor Circuits

In the following, we will turn to some slightly more complex circuits in order to introduce the
principles of the transconductance amplifier, which is used in a variety of circuit configurations in
analog circuit design.

4.3.1 The differential pair

Figure 53: (A) Differential Pair Circuit. (B) Differential Pair output currents on differential input
voltage. Adapted from textbook.

The differential pair has the same basic structure as the source follower, except that the current
source, also called the bias current Ib is now shared by two MOSFETs M1 and M2 whose sources
are connected to the drain of the bias MOSFET Mb. The sharing of the current between M1 and
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M2 depends on their respective gate voltages V1 and V2. If all MOSFETs are operated below
threshold and in saturation and we assume that M1 and M2 have the same subthreshold slope
factor κn, we obtain the following equations (assuming all transistors work in saturatio):

I1 = I0e
κV1−VS
UT (82)

I2 = I0e
κV2−VS
UT (83)

Because of Kirchoff’s Current Law, IB = I1 + I2, and IB = I1 + I2 = I0e
κVb
UT . Now we can

rewrite Ib

Ib = I0e
−VS
UT (e

κV1
UT + e

κV2
UT ) (84)

With some algebra (by factoring out e
−VS
UT ), we can reach the elegant rewriting of I1 and I2 as

a function of the two input voltages:

I1 = Ib
eκnV1/UT

eκnV1/UT + eκnV2/UT
(85)

I2 = Ib
eκnV2/UT

eκnV1/UT + eκnV2/UT
(86)

Now if we take the difference between I1 and I2:

I1 − I2 = Ib
e
κV1
UT − e

κV2
UT

e
κV1
UT + e

κV2
UT

= Ibtanh(
κ(V1 − V2)

2UT
) (87)

The dependence of these two currents on the difference of the two input voltages is shown in
Figure 53.B. The curves have a sigmoidal shape 41. Actually, if you re-arrange any of these two
equations, you obtain exactly the form of a sigmoid function 42. They are almost linear for small
voltage differences and saturate at Ib for large voltage differences. We saw that the difference
between I1 and I2 gives a tanh function. Such compressive nonlinearities (the sigmoid and tanh)
are very useful for the implementation of different functions, especially in the context of neural
networks. What makes the circuit even more useful is the fact that to a first approximation
(neglecting the Early effect), the output currents depend only on the difference of the input
voltages: The circuit has a small common-mode sensitivity. Here is a summary of things about
Differential pairs that you want to keep in mind if you get to talk about it in the exam:

• These equations work assuming all transistors operate in subthreshold and saturation.

• The assumption that Mb works in saturation should normally not be taken. We should
use the full equation to evaluate the current Ib. However, in this chapter we chose to just
assume this. We will, in the next chapter on Transconductance amplifier, specifically derive
the condition that need to be satisfied for M3 to operate in saturation (that is VS > 4UT ,
which will yield a specific V1, V2 and Vb relation to satisfy. Don’t worry about this too much
for now, it will make sense in the next chapter.

• The dependence of these two currents on the difference of the two input voltage gives nice
and smooth sigmoid functions, with a linear I-V relationship for small voltage differences.
You can use this property to implement programmable resistors in the circuit!

• Voltages are differential rather than absolute quantities - this is very useful, for things such
as cancelling out noise.

• If you take the difference between I1 and I2, you reach a hyperbolic tangent function. This
also gives a linear I-V relationship for small voltage differences, which is a property we will
use in the transconductance amplifier.

41Sigmoid are very important functions in Neural Networks. You can read a bit more about them here:
https://machinelearningmastery.com/a-gentle-introduction-to-sigmoid-function/

42I1 = Ib
eκnV1/UT

eκnV1/UT+eκnV2/UT
= Ib

1

1+e

κ(V2−V1)
UT

, which is a sigmoid function with x = −κ(V2−V1)
UT
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4.3.2 The current correlator

The current correlator measures the correlation between unidirectional input currents, whereas
the bump circuit (which we’ll look at just after that) measures the similarity or dissimilarity of
input voltages. Both of these circuits have been used in many analog VLSI designs. For example,
these circuits have been used in a stereoscopic vision system (Mahowald, 1994) to disambiguate
between real and false targets. Both circuits are extensively discussed in Tobi’s 1993 paper 43

Figure 54: Current Correlator. Adapted from textbook.

Carver Mead recognized that in subthreshold operation, the current-correlator circuit in Figure
54 computes a measure of the correlation between its two input current I1 and I2. Intuitively,
the series-connected transistors perform an analog logic AND like computation. If either of
the gate voltages on these series connected transistors is low, then the output current is shut
off. Conversely, if both of the input voltages are high, then the output current is large. In the
intermediate regions, the circuit computes an approximation to the product of the input currents.
Some important details: M1 is in the Ohmic region, and M2 is in saturation. We can thus derive
the equations of function for this circuit: As M1 and M2 are connected in series, the same current
Iout flows through them.

For M1 : Iout = I0e
κV1/UT (e−VS/UT − e−V/UT ) = I0e

κV1(1− e−V ) as VS = 0 (88)

For M2 : Iout = I0e
κ
V2−V
UT (89)

Here V is the drain voltage of M2 and the source voltage of M1. For simplicity, let’s ignore UT in
the following equations which cancels out anyways. We can factor the last equation as follows:

eV =
I0e

κV2

Iout
(90)

From simple saturation equation, we can derive I1 and I2:

I1 = I0e
κV1 ; I2 = I0e

κV2 (91)

After some very tedious algebra and rearranging, we find back the elegant equation:

Iout =
I1I2
I1 + I2

(92)

43https://www.ini.uzh.ch/ tobi/anaprose/bump/index.php
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4.3.3 The Bump-antibump circuit

The bump anti bump circuit is a circuit invented by Tobi 44, that also aims at computing the
similarity and difference between two input signals. While we do not need to know the details
of the circuit, it is important (and interesting) to describe qualitatively what computation this
rather complex circuit does.

Figure 55: (a) Bump-Antibump circuit. (b) Output characteristics of bump-antibump. circuit
Adapted from Lecture Notes. Output characteristics is Yassine’s drawing, inspired from Hector
the Saviour’s explanation. Thank you Hector.

Figure 55.A shows the bump-anti bump circuit, which looks a lot like the current correlator
when you pay attention, and it is not so dissimilar on a functional level. It has 3 outputs: I1, I2
and Iout, also often called Imid. Output Iout is the bump (as can be seen from the graph), and
I1 and I2 form, combined, the anti-bump of the circuit. We can intuitively reason through the
circuit: The three current must sum to the bias current Ib due to Kirchoff’s Current Law. Hence,
voltage VC follows the higher of V1 or V2. The series connected transistors M1 and M2 form the
core of the same analog current correlator that is used in the current-correlator. When δV = 0,
current flows through all three legs of the circuit. When δV increases, the common-node voltage
VC begins to follow the higher of V1 or V2, thereby shutting off Imid. This is because the transistor
whose gate is connecteer to the lower of V1 or V2 shutts off! Indeed, if V1 increases, I1 increases,
but it can never increase beyond Ib as Ib = I1+I2+Imid. So we reach a point where I1 gets all the
current with a high V1, not letting anything through I2. This leads V2 to adapt itself in order to
virtuall shut off I2, and Imid with it as it’s the gate voltage of M2. Same applies in reverse when
increasing V2 and I2. So Imid is max when δV = 0 and shut off with a significant δV . Conversely,
I1 and I2 respectively follow V1 and V2.

We could write the equations that describe how I1, I2 and Imid behave as a function of input
voltages, but it’s just fancy equation that you won’t remember and won’t be asked about in the
exam. Just remember the intuition behind the circuit!

4.4 Laboratory : Static Circuits

In this fourth lab , we are going to use our knowledge of subthreshold transistors to characterize
two circuits : the differential pair and the Bumb antibumb.

To measure small current (in our case from 1 pA to 10 nA) we are going to use a converter
circuit, which will map current to frequency (C2F). Be aware of this because later on we need to
map back our results to current.

44https://www.ini.uzh.ch/ tobi/anaprose/bump/index.php
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Today, you will also be first exposed to a Multiplexer and demultiplexer (mux/demux) circuit.
The transistors we use are very tiny and numerous, but the input-output pins and C2F converters
are unfortunately spacious. Therefore, we need mux/demux to select the circuits that we want at
the beginning of each lab.

Another functional circuit we use is the Bias Generator. It will make sure that all transistors
work in the subthreshold regime by mirroring a current to the circuits that we need.

Thus, we have three functional circuits that can let us advance to more complicated experiments
. These are : - C2F converter - Multiplexer and demultiplexer - Bias Generator

They are here to help you, just be aware of them.

4.4.1 N-FET differential pair circuit (NDP)

First, we need to calibrate the C2F converter and the bias generator. To calibrate the output of
C2F, we set a high voltage differential between V1 and V2 (i.e. around 0.4V) and we loop through
a range of bias currents. We than read the output (which are frequencies) on the I1 and I2. This
way we have a dictionary to refers to when we map frequency back to current in a later stage.

The interesting part starts now. We fix a common voltage between V1 and V2 and we loop
through a range of V1 and V2 that respect this common voltage constraint.

I1 becomes dominant when the differential V1−V2 is higher than -0.1V. The two output current
are symmetrical, whereas the difference between the two is a sinusoidal. Overall, the current in
the circuit is always equal to the bias current Ib.

Figure 56: Interpolated differential pair currents plotted over the voltage difference V1 − V2

If we increase the bias or the common mode, we can increase the current flowing in the circuit,
hence, also the maximum ampere of I1 and I2.

In the range of linearity, we observe that the offset voltage is slightly greater than zero because
the two transistors are not exactly the same (as it is in theory assumed by the model). We note
that the scale of the linearity range is the thermal voltage because the transistor is running under
the weak inversion regime. We speculated that if the regime was strong inversion, the overdrive
would have determined this range, but it turned out we were wrong.

4.4.2 Bumb antibump

The process to get results in the Bumb Anti Bumb circuit is comparable to the one used before .
We calibrate the channels and then we extract results varying V1 and V2 under a common voltage
constraint (i.e. 0.9V).
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Figure 57: Interpolated Bumb AntiBumb plotted over the voltage difference V1 − V2

What is important to notice, is that the sigma of the Guassian distribution Iout (sorry for the
approximation, but I see Bell curves everywhere) it’s proportional to the current Ib. Keep this in
mind, but don’t bring it up near to Tobi because it awakens bad memories to him ;).

The behavior of Iout is very well defined because we are interpolating frequencies outputs.
Therefore, we can easily fit a quadratic function to the sum I1 + I2 and a linear function for the
individual components.

Figure 58: Quadratically fitted interpolated Bumb AntiBumb plotted over the voltage difference
V1 − V2

4.5 Test yourself

You should be able to answer the following things:

• Explain what the Early effect is, why it’s important and when one should pay attention to
it.

• Understand how a diode-connected transistor function, both through nFET and pFET!

• Draw a current mirror, and qualitatively explain how it works and the assumptions taken
to derive the behaviour.

• Draw a differential pair, and qualitatively describe its functioning. sketch the I-V relationship
between the input voltage difference and output currents. Derive its equation.

• Draw a current correlator, and qualitatively describe its functioning. Know its equation.

• Qualitatively describe the functioning of a bump antibump circuit

78



5 The Transconductance Amplifier

If a whole lecture is dedicated to this specific circuit, it is for a good reason. It is a building
block of many different electrical circuits, within and beyond Neuromorphic Engineering. You
may have heard of its cousin the Operational Amplifier (commonly called OpAmp), which is not
that different. In this chapter, we’ll first look at the architecture of this circuit, and then look at
precise function with different case scenario. We’ll finish by briefly looking at another circuit that
is built from the transconductance amplifier: the Wide-output-range differential transconductance
amplifier.

Here are things you should be comfortable with before starting to read through this chapter:

• Architecture and behaviour or the diode connected transistor (specifically P-Type)

• Architecture and behaviour of current mirror (specifically P-Type)

• Architecture and behaviour of differential-pair.

• Early Voltage and output conductance of transistors.

5.1 Architecture

Figure 59: The Transconductance Amplifier. A) Transconductance Amplifier Circuit. B) Electri-
cal symbol of the Transconductance Amplifier. Adapted from Lecture Notes.

In the Transconductance Amplifier circuit, shown in Figure 59.A, the first thing to pay attention
to is that it is a combination to two circuits we have studied before: the differential pair (on
the lower end) and a P-Type current mirror (on the higher end). Let’s remind ourselves of the
important equations and assumptions of the diff pair and the P-type current mirror.

The differential pair Remember that the differential pair implements a difference between the
two input voltages V1 and V2 which translates to the two output currents I1 and I2. Here are the
equations:

I1 = Ib
eκnV1/UT

eκnV1/UT+eκnV2/UT
(93)

I2 = Ib
eκnV2/UT

eκnV1/UT+eκnV2/UT
(94)

We previously assumed that all transistors work in subtreshold and saturation Remember
also the sigmoid behaviour of the two output currents, as well as the hyperbolic tangent (tanh)
behaviour of the difference between the two currents.
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The P-type current mirror We have shown in the previous chapter that the P-Type current
mirror behaves as follows:

Iout = Iine
Vs1

−Vs2
UT (95)

In our case, both VS1
and VS2

are Vdd. We therefore have a unity gain: Iout = Iin.

5.2 Transconductance Amplifier Function

We can now start to analyze the dynamics when both the current mirror and the diff pair are
connected to form a transconductance amplifier.

5.2.1 Let’s assume everything is in Saturation

Let’s first start with, as always, some assumptions and consequent observations.

• M1 works in saturation: I1 = I0e
κV1−VS
UT

• M2 works in saturation: I2 = I0e
κV2−VS
UT

• M3 works in saturation: Ib = I0e
κVb
UT

• M4 and M5 are also in saturation. We can therefore apply the P-Type current mirror
equation reached previously.

Now let’s see what we can reach with this. We noted previously that our current mirror had a
unity gain, this means that I1 flows through M5 (since it is mirroring the current of M4). Using
Kirchoff’s current law, we can now establish that: Iout = I1−I2. If we take the expression derived
in the assumptions for I1 and I2, we reach with some tedious algebra:

Iout = I1 − I2 = Ib
e
κV1
UT − e

κV2
UT

e
κV1
UT + e

κV2
UT

= Ibtanh(
κ(V1 − V2)

2UT
) (96)

This yields the following dynamic:

Figure 60: The Transconductance Amplifier ouptput current as a function of the difference between
V1 and V2. This is assuming that all transistors, especially M3 are in saturation. Adapted from
Lecture Notes.

Importantly, we note that for small differential voltages (|V1 − V2| < 200mv), the tanh rela-
tionship is approximately linear and our equation can be reduced to:
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Iout ≈ gm(V1 − V2) with gm =
Ibκ

2UT
(97)

The term gm is the transconductance of the amplifier. It quantifies how much the potential
difference will influence the output current: gm = ∂Vin

∂Iout
. It has the dimensions of a conductance

(1/Ohms). To increase gm, you can only increase Ib. Usually, a high transconductance is more
desirable, as it leads to a higher out current for the same current. The issue is that to increase
Ib, you need a higher Vb, which means consuming more energy. As Shih-Chii says: there is no
free lunch! Because the output current is measured at a terminal which is different from the pair
across which the input voltage difference is applied, we can also define another term (which we’ve
defined before!): the output conductance gd = ∂Iout

∂Vout
. Instead of measuring the change in

current as a function of input voltage as with gm, we measure the change in current as a function
of the change in output voltage. We reach the familiar expression:

gd = − ∂Iout
∂Vout

≈ Ib
VE

(98)

where VE is the Early Voltage of M2 and M5, assumed equal.

Figure 61: A) Transconductance of Transamp gm. B) Output conductance of Transamp gd.

5.2.2 Let’s stop assuming that everything is in Saturation

Now, let’s consider the case where we cannot assume that M3 operates in saturation (does not
mean it is not in saturation, just that we cannot assume it). This yields a different behaviour. We
assume that the rest is still in saturation. We therefore have to write the full equation for current
Ib.

Ib = I0e
κVb
UT (1− e

−Vs
UT ) (99)

From the differential pair, we know that Ib = I1 + I2. Assuming that M1 and M2 are in
saturation, we reach:

Ib = I0e
κVb
UT (1− e

−Vs
UT ) = I0e

κV1−Vs
UT + I0e

κV2−Vs
UT (100)

Solving for e−Vs/UT , we reach with some, as always, tedious algebra:

e−Vs/UT =
eκVb/UT

eκVb/UT + eκV1/UT + eκV2/UT
(101)

So we considered the case where we could not be certain of M3 operating in saturation. We
derived the subsequent equation, and now we want to find what are the conditions and implications
ofM3 actually being in saturation. Confusing, I know. But just think of it as a more rigorous way
to work with this circuit: we want M3 to be in saturation but we can’t assume it is, so let’s figure
out how to make it work the way we want. So: if we want M3 to operate in saturation, we need
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the Vds ofM3 to be above 4UT , which means that Vs > 4UT and subsequently that e−Vs/UT << 1.
Now let’s do some maths:

e−Vs/UT =
eκVb/UT

eκVb/UT + eκV1/UT + eκV2/UT
<< 1 (102)

eκVb/UT << eκVb/UT + eκV1/UT + eκV2/UT (103)

If we divide both sides by eκVb/UT , we reach:

1 +
eκV1/UT + eκV2/UT

eκVb/UT
>> 1 (104)

eκV1/UT + eκV2/UT

eκVb/UT
>> 1 (105)

eκV1/UT + eκV2/UT >> eκVb/UT (106)

Remember that:

e−Vs/UT =
eκVb/UT

eκVb/UT + eκV1/UT + eκV2/UT
(107)

Well from, that, we can derive Vs:

Vs = −κVb + UT ln(eκVb/UT + eκV1/UT + eκV2/UT ) (108)

Which, thanks to equation 106, yields:

Vs = −κVb + UT ln(eκV1/UT + eκV2/UT ) (109)

Now, taking the assumption that |V1 − V2| > 4UT , we can finally turn into something useful:

Vs ≈ κ(max(V 1, V 2)− Vb) (110)

Wait what? Where did the max come from? Yeah I asked myself the same question. It’s no
difficult to see: because the difference between |V1−V2| > 4UT , the expression inside the logarithm
will converge to whichever of V1 or V2 is the biggest, hence the max function. Then it’s just some
factorizing to do. Well anyways, now we managed to derive what condition we need to satisfy to
ensure that M3 will be in saturation as it will have VS > 4UT :

max(V 1, V 2) > Vb +
4UT
κ

(111)

Yes, all of this, just to know what kind of voltage we have to apply to V 1, V 2 and VB so that our
transistor M3 is in saturation. Now we can use the equation we derive in the previous section,
without feeling bad about the fact we’re just doing something unrealistic as we have too many
assumptions. You see, assumptions aren’t so bad in the end? And yes, I know, that was all very
tedious, and probably unnecessary to derive here as we clearly won’t have to do that for the exam.
But don’t get mad, I’m just trying to give you all the good info, and it’s 2 in the morning so I am
not thinking straight.

But what about the other Transistors? Before we move on, let’s have a last look at the
assumptions. So we just managed to derive the specific conditions to satisfy to ensure that M3

operates in saturation. We, unfortunately, have to consider the saturation conditions for the other
transistors as well. For practical purposes, M1 and M4 will always be in saturation because M4

is diode-connected and the drain of M1 is thus at a high voltage (THIS IS WORD TO WORD
WHAT IS WRITTEN IN THE TEXTBOOK, BUT SHOULDN’T IT BE LOW VOLTAGE?).
Now we need to look at M2 and M5. So for these we’re gonna have to work on it a bit.

• To keep M5 in saturation, we need Vdd - Vout > 4UT
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• To keep M2 in saturation, we need Vout - Vs > 4UT ≡ Vout > 4UT + VS . We’ve just found
VS before, so let’s use that, and we get

Vout > κ(max(V1, V2)− Vb) + 4UT (112)

Huh... That’s annoying. Our Vout also need to satisfy some condition which depends on V1,
V2 and Vb. This is called the min problem, because we manage to get in saturation only
if the minimum Vout is greater than the condition above. And well, before we kinda also
reached a min problem where we had saturation only if |V1−V2| was higher than Vb+4UT /κ.
So you see that to get this circuit operated properly, you need to satisfy a lot of different
things, which in practice are absolutely not trivial to satisfy.

• So how does this circuit work in practice? To be honest I am not sure myself and wouldn’t
mind having your input on it :).

5.2.3 Transconductance Amplifier as a Voltage Amplifier

This will be a brief comment on the subject. There is more to know than what we’ll discuss,
but we are not required to know the details. The transconductance amplifier can be used as a
differential input voltage amplifier, where essentially: Vout = A(V1 − V2). A being the gain of
the circuit, relating the change in output compared to the change in input. Here is the transfer
function, which uses some of our previously derived knowledge on transconductance and output
conductance:

A =
∂Vout

∂(V1 − V2)
=
∂Vout
∂Iout

∂Iout
∂(V1 − V2)

=
gm
gd

≈ κVE
2UT

(113)

Here are key take aways from how this amplifier works:

• The open-circuit voltage gain A increases with Early Voltage and therefore with the length
of the output transistors.

• Typical subthreshold values of A are between 100 and 1000.

• Because of the large voltage gain and transistor mismatch effects, the amplifier is usually
used in a negative-feedback configuration. This mean that the circuit itself is too noisy to
use its output as a function of its inputs, so it’s either used as a comparator only (where the
precise values don’t matter) or by integrating a negative feedback that typically reduces the
gain to create a more stable circuit.

• In open-voltage mode, it is used mainly as a comparator: Vout is ”high” only when V1 > V2,
and vice versa.
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Figure 62: Voltage amplification characteristics of simple differential transconductance amplifier.
Adapted from Textbook.

Ok that was a lot for just one circuit. Let’s summarize the key take aways:

• M3 cannot be assumed to be in Saturation, so we used the full subtrehshold equation to
find under what conditions M3 could indeed be in saturation. We found that we needed to
tune V1, V2 and Vb to ensure that max(V 1, V 2) > Vb +

4UT
κ to be in saturation. If we do

tune our voltages according to this equation, we are in saturation, and the I-V relationship
derived in the previous section applies.

• Since Vout increases with increasing V1 and decreases with increasing V2, the gate of M1 is
called the non-inverting input terminal and the gate of M2 the inverting input terminal of
the amplifier. It’s the same with current, since Iout = I1 − I2, if V1 is large, I1 is large and
Vout is large - hence it carrying the name of the non inverting terminal. Converse situation
applies when V2 is large.

84



6 Linear Systems Theory

This chapter will be some kind of exception to the rest of the chapters. Indeed, most of the
Linear Systems’ lecture covers basic of ”Signals and Systems” - a field of its own, in order to
properly introduce circuit response, steady state analysis and capacitive circuits which include
time constants. When I attempted to write an exhaustive summary for this chapter, I realized
four important things, which led me to organize the chapter the way I did:

1. It is simply impossible for anyone to understand the concepts introduced (delta function,
convolution etc...) from only the introduction that was given in class. Signals and Systems
is a paradigm of analysis on its own, and grasping the fundamentals properly takes, well,
a lot of time. I took a whole course on this topic in my undergraduate degree and I still
struggle to get the intuition behind convolution. Maybe I’m stupid.

2. There is no way for me to explain the basics of Signal and Systems without spending a whole
month reviewing the topic on my own in order to find good analogies and ways of explaining
it to the uninitiated.

3. Even if I did that, I’d never (in my wildest dreams) manage to do anything better than Alan
V. Oppenhein in his classic textbook ”Signals and Systems”. 45

4. Last, and clearly not least, we are not required to know anything beyond Resistor-Capacitor
circuit analysis (transfer functions etc..), which only require basic knowledge of how Laplace
Transforms work.

I have thus decided to only cover the topics I mentioned in my last argument, that is: 1) a
brief overview of exponential and Laplace Transforms and 2) full derivations of Resistor-Capacitor
circuits transfer functions and dynamics. I have also included in the appendix the full textbook
chapter on Linear Circuits, which may serve as a reminder or point of reference for those who wish
to verify some details. This chapter is very well written (for whoever has learnt about Signals and
Systems before), and I wouldn’t want to spend a whole day simply rewriting word for word what’s
already written there. Again, if you don’t know what Signals and Sytems Theory is all about,
you have two options: 1) Don’t worry about it, you will be just fine with what I write about; 2)
go read the first two chapters of the Alan Oppenheim textbook I mentioned above. If you choose
2), you have my respect, for whatever it’s worth.

Here are things you should be comfortable with before starting to read through this chapter:

• Basics of electronic circuits, which is all reviewed in chapter 0

• Complex exponential basic mathematics.

• Architecture, function and application of the transconductance amplifier.

SOMETHING IMPORTANT IS MISSING IN THE CHAPTER, MAINLY THAT I AM NOT
EXPLAINING WHY IT’S CALLED INTEGRATOR AND DIFFERENTIATORS.

6.1 Preliminary to Resistor Capacitor Circuits

This will be brief. I assume that most of the readers are reasonably comfortable with complex
exponential already, and that Laplace Transforms are not unfamiliar either. Almost exclusively
basing myself on the textbook.

45Here is a link to the PDF version: https://eee.guc.edu.eg/Courses/Communications/COMM401%20Signal%20&
%20System%20Theory/Alan%20V.%20Oppenheim,%20Alan%20S.%20Willsky,%20with%20S.%20Hamid-Signals%20and%

20Systems-Prentice%20Hall%20(1996).pdf
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6.1.1 Complex Exponentials

All solutions to linear homogeneous equations are of the form est where s is a complex number.

s = σ + jω =Mcos(ϕ) + jMsin(ϕ) (114)

where j =
√
−1, σ is the real part of the complex number and ω is the imaginary part. M

represents its magnitude and ϕ its phase. Magnitude and phase of a complex number obey the
following relationships:

M =
√
σ2 + ω2 (115)

ϕ = arctan(
ω

σ
) (116)

The magnitude of a complex number s is often denoted as |s|. Furthermore, applying the properties
of complex exponentials, one can observe that:

ejϕ = cos(ϕ) + jsin(ϕ) (117)

e−jϕ = cos(ϕ)− jsin(ϕ) (118)

it follows that s can also be written as:

s =Mejϕ (119)

These notations can be used to solve higher order differential equations. As an example,
we consider the second order linear homogeneous equation:

d2

dt2
V + α

d

dt
V + βV = 0 (120)

Assuming est is an eigenfunction46 and substitute for V:

s2est + αsest + βest = 0 (121)

Solving for s we obtain

s =
−α±

√
α2 − 4β

2
(122)

Consequently, if α2 − 4β ≥ 0, s is real, otherwise it is complex.

6.2 Step and Delta function

If you do not know what this is, please see Textbook Linear Systems Chapter in appendix, section
8.3 and 8.4.

6.2.1 The Heaviside-Laplace Transform

By analyzing the example of the previous section we can make the following observation: Any
time we substitute the eigenfunction est into a linear differential equation of order n, the following
property obtains:

dn

dtn
est = snest (123)

In other words: We can consider s as an operator meaning derivative with respect
to time. Similarly, we can view 1

s as the operator of integration with respect to time
(Oliver Heaviside)

Formally, we write;

L{y(t)} = Y (s) =

∫ ∞

−∞
y(t)e−stdt (124)

Notice that we write y(t) for a signal in time domain and Y (s) for a signal in Laplace domain.
A signal in laplace domain is simply a signal in time domain which we have applied the Laplace
transformation to (equation above). If you don’t understand this, don’t worry, figuring out how
this works in practice is all that matter.

46An eigenfunction is a nonzero solution of a second order linear homogenous differential equation
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6.2.2 Transfer Function

Technically, to understand properly the concept of a transfer function, you should know what
convolution, impulse response and Laplace transforms (more than what I introduced) are all
about. But let’s just make things very simple and say that we define the transfer function H(s)
as follows:

H(s) ≡ Y (s)

X(s)
(125)

which underlies very complex ideas just to say that it’s the output divided by the input both
in Laplace domain (see Figure 63).

Figure 63: Typical black-box representation of a linear system. Its input is the signal x(t) in time
domain, and X(s) in Laplace domain and its output is the signal y(t) in time domain and Y (s)
in Laplace domain. Adapted from textbook

6.3 Resistor-Capacitor Circuits

Figure 64: Resistor capacitor (RC) circuits. The signals x(t) represent input voltages, and the
signals y(t) represent output voltages. (a) Integrator circuit (low pass filter); (b) Differentiator
circuit (high pass filter). Adapted from textbook

I advise finding a memory hack to remember which is which. I know I begin with RC (not CR)
which is low (you begin low and then you go high) and treats the ”primitive” (integrator).

6.3.1 Solving Low pass Integrator RC circuit

Figure 64.a). Let’s start by analyzing the circuit in a), and we need to start with KCL voltage
law:

uin = uR + uC , (126)

where uR and uC are the voltage drops over the resistor R and capacitor C, respectively.
We have some current flowing in the branch and no current is flowing out of the main branch,

so no current in y(t). This is because, in electronics, we view open circuit as having infinite
impedance. According to Ohm’s law we have 47:

uR = i.R, and uC =
i

jωC
(127)

47I advise having a look again at section 0.1.9 about AC circuits and capacitance in complex domain if the
following is not perfectly clear.
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When combining these two equations, we get:

uin = i ·R+ i · 1

jωC
= i · (R+

1

jωC
) (128)

In the case of this circuit, because voltage is the same across parallel branches, uout = uc, we
can therefore write the transfer function uout

uin
as follows:

uout
uin

=
i · 1/jωC

i · (R+ 1/jωC)
=

1

jωRC + 1
(129)

Now we can rearrange and essentially obtain a differential equation (remembering that dejωt

dt =
jωejωt)

jω ·RCuout + uout = uin ≡ RC
duout
dt

+ uout = uin (130)

You may wonder what this is all about, and why am I even doing this. I wondered myself, but
don’t worry, we’ll get to it. It’s all about transfer functions and understanding how the system
output changes with respect to input change.

One important thing, RC has now appeared. As you can see, it is a constant (assuming
resistance and capacitance are constant in a circuit) that scales the rate of change of the output
with respect to time. This is called the time constant and is noted τ . This is critically important
to understand charging and discharging time of capacitors (see Figure 65.The formal definition is:
The circuit’s time constant τ = RC is the time required to discharge the capacitor, through the
resistor, to 36.8% (1/e) of its final steady state value.

Figure 65: The circuit’s time constant τ = RC is the time required to discharge the capacitor,
through the resistor, to 36.8% (1/e) of its final steady state value. Adapted from lecture notes

H(s) =
Y (s)

X(s)
=

1

1 +RCjω
(131)

Solving with Laplace transform In Laplace domain, the equation can be rearranged to:

τsY (s) + Y (s) = X(s) (132)

We can now also conveniently define the transfer function H(s), taking X(s) = 1 (impulse):

H(s) =
Y (s)

X(s)
=

1

1 + τs
(133)
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6.3.2 Solving High pass Differentiator CR circuit

Figure 64.b). I won’t be going into the derivation for this, but it really follows the same logic. In
the end, we reach this differential equation:

jω · τ · uout + uout = uin ≡ τ
duout
dt

+ uout = τ
duin
dt

(134)

Solving with Laplace transform In Laplace domain, the equation can be rearranged to:

τsY (s) + Y (s) = sX(s) (135)

Yielding the transfer function (also taking X(s) = 1):

H(s) =
Y (s)

X(s)
=

τs

1 + τs
(136)

6.3.3 Frequency Domain Analysis

It may not be clear yet to you why are these circuits called lowpass/high pass filters, as well as
differentiator/integrators. While we will look at the differentiator/integrator property in the next
circuit, we can first start with some frequency domain analysis to make the filtering part clearer.

Let’s now consider how this circuit responds to sinusoidal signals of different frequencies. Si-
nusoids have a very special relationship to shift-invariant linear systems, such as the one we are
analyzing. When a sinusoidal signal is applied as input to a shift-invariant linear system, then
its response will be another sinusoidal signal, with possibly a different amplitude and a different
phase, but certainly with exactly the same frequency! That is, if the input is x(t) = sin(ωt), the
output will be y(t) = Asin(ωt+ ϕ), where A and ϕ determine the scaling and shift.

Remember that the transfer function we obtained earlier for the RC low pass filter circuit was

H(s) = Y (s)
X(s) = 1

1+τs . This is in Laplace domain, if we are playing with frequencies of signals, it

makes sense to switch to the frequency (time) domain. In this domain s = jω and the circuit’s
transfer function simply becomes:

H(jω) =
1

1 + jωτ
(137)

From this transfer function, we make two useful observations:

1. If the frequencies of the sinusoidal signals are small with respect to the circuit’s time-constant
(ωτ ≪ 1), then the circuit’s output will resemble its input (Y (jω) ≈ X(jω))

2. On the other hand, if the frequencies are large with respect to the circuit’s time constant
(ωτ ≫ 1), then:

Y (jω)

X(jω)
≈ 1

jωτ
(138)

These observations are also reflected in the plots of the transfer function’s magnitude and
phase (Figure 66). These plots are referred to as Bode plots and they are used to analyze the
response of a dynamic system in terms of its transfer function. The magnitude of the transfer
function is:

|H(jω)| = 1√
1 + (ωτ)2

(139)

and its phase is:

ϕ = arctan(−ωτ) (140)
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Figure 66: Bode plot of a first order linear system, such as the RC circuit of Fig. 64.a) Magnitude
and b) Phase as a function of input signal angular frequency ω. Adapted from Textbook.

We define the frequency ωcutoff = 1
RC = 1

τ as the cutoff frequency. The cutoff frequency is
the frequency at which, either above or below (depending on if you are using a low pass or high
pass filter), the power output of a circuit is reduced to 1/2 of the passband power 48. This
is equivalent to a voltage (or amplitude) reduction of 70.7% of the passband, because voltage V 2

is proportional to power P. This happens to be close to -3 decibles and the cutoff frequency is
frequency referred to as the -3dB point. In (Figure 66), it is set equal to 1.

Now let’s look at a plot which really demonstrates how the response (output) of the input
signal is reduced after filtering in figure 66.

Figure 67: Response of an RC low-pass filter (R = 10MΩ, C = 1nF ) to input sinusoids of
different frequencies. The input signals have been normalized to unity, and the outputs have
been normalized with respect to the input. The time axis has also been normalized so that the
responses to all the frequencies could be presented on the same graph. Adapted from Textbook.

The RC circuit of figure 64.a allows sinusoidal signals with frequencies lower than the cutoff
frequency to pass virtually unchanged. On the other hand, the frequency components of the input
signals that are above the cutoff frequency are attenuated. The phase lag between the input and
the output of the system increases with ω (see Figure 66.b) and saturates at 90 degrees. Figure
67 shows experimental data measured from an RC lowpass filter with R = 10MΩ and C = 1nF
. Sinuosoids of increasing frequency were applied to the circuit and the corresponding responses
were measured. To show the effect of a range of input frequencies on the circuit’s response, all
the data are plotted on a normalized scale. The responses have been normalized with respect to

48Power, not amplitude. Remember that for an electrical circuit, power P = V 2

R
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the input and time has been normalized to unity. As expected, the output signal is attenuated as
the input frequency increases; and the phase lag between the input and output signals increases
with increasing frequency.

6.3.4 Why are they called integrators and differentiators

There are physical explanations of why these are called integrators and differentiators, which
should intuitively make sense. These unfortunately do not yet make sense to me. However, the
mathematical intuition behind it is very elegant and simple to grasp, and perfectly explains why
they bear these names.

Low Pass as Integrator: For a low pass filter, we established our transfer function as:

H(jω) =
Y (jw)

X(jw)
=
uout(t)

uout(t)
=

1

τjω + 1
(141)

Now when we are beyond the cutoff frequency, that is: ω >> ωcutoff = 1
τ , our transfer function

becomes:

H(jω) =
uout(t)

uin(t)
≈ 1

τjw
(142)

We can express uout as a function of uin, keeping in mind that uin is a complex exponential:
uin = ejωt, and its integral

∫
uin(t) =

∫
ejωt = 1

jω e
jωt = 1

jωuin(t)

uout(t) =
1

τjw
uin(t) ∝

∫
uindt (143)

And here is our integral!

High Pass as Differentiators: Following exactly the same logic, we note that at low frequen-
cies, ω << ωcutoff = 1

τ , our transfer function becomes:

H(jω) =
Y (jw)

X(jw)
=
uout(t)

uin(t)
≈ τjω

1
≈ τjω (144)

We can thus express uout as a function of uin and reach the elegant:

uout(t) = τjω · uin(t) ∝
∂uin(t)

∂t
(145)

6.3.5 Summary about filters

• The figures we’ve just shown are for RC Low-Pass filters. The amplitude and power of the
output signal decreases for high frequencies.

• The time constant τ = RC determines what high and low frequencies are, it also determines
the cutoff frequency (at which output power is halved)

• Cutoff frequency ωcutoff = 1
RC

• CR circuit (figure 64.b), is a high pass filter, which is just the same as we’ve shown but in
reverse: it passes high frequencies and reduces low frequency.

• You can build a band pass filter from combining a high pass and low pass filter: the low
pass will reduce all frequencies higher than your max desired frequency and the high pass
will reduce all frequencies lower than your min desired frequency.

• A low pass filter acts as integrator for high frequencies, and high pass filter as differentiator
in low frequencies/
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• Why is this even useful? Imagine you’re trying to process sound, like music for example,
where you have some high frequency noise that is not your music (you barely hear it but
it’s there and alters your recording). Would be great if you could filter that out right? And
only keep the frequencies of sound that are actually coming from the music (between 10
and 3000 Hz). This is just one dumb example on the top of my mind of why filtering is
useful, and we’ll see in the next section applications in Neuromorphic Engineering.

6.4 VLSI Integrators and Differentiators

Now we’re going to blend the observations we’ve just made about low pass and high pass filters
with what we know of the transconductance amplifier to do some cool things. Let’s refresh our
mind as to what the transconductance amplifier is all about:

• Iout = I1 − I2 = Ib
e
κV1
UT −e

κV2
UT

e
κV1
UT +e

κV2
UT

= Ibtanh(
κ(V1−V2)

2UT
)

• Iout ≈ gm(V1 − V2) with gm = Ibκ
2UT

for V1 − V2 < 200mV .

• gd = − ∂Iout
∂Vout

≈ Ib
VE

• A = ∂Vout
∂(V1−V2)

= ∂Vout
∂Iout

∂Iout
∂(V1−V2)

= gm
gd

≈ κVE
2UT

What is the problem with the filters we’ve seen before? In VLSI technology, the time-
constant of RC circuits implemented with passive elements cannot be changed once the chip has
been fabricated. Both resistance and capacitance are fixed at design time by the geometries of
the layout mask layers (this is the subject of NE2). By contrast, the transconductance amplifier
has a transconductance that depends on its bias voltage which can be set on the operating chip.
Therefore, this device can be used to design an integrator circuit that has an adjustable time-
constant: This follower integrator, which was first designed by Carver Mead in 1989, is shown
in Figure 69. But before looking at the follower integrator, let’s look at the unity gain follower,
which will allow us to better understand the follower integrator.

6.4.1 Unity Gain Follower

Figure 68: A) Unity Gain Follower circuit. B) Deviation of output voltage from input voltage for
simple unity-gain follower. Adapted from Textbook.

Most circuit applications use the transconductance amplifier as part of a negative-feedback loop.
The negative feedback ensures that the amplifier stays within its operating range. We mean by
operating range the range where the difference between the input and output is small and the
conductance is linear. The simplest negative feedback loop is obtained by short-circuiting the
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output terminal and the inverting input terminal, as shown in Fig. 68.A. The transfer function of
this circuit is given by:

dVout
dVin

=
A

A+ 1
≈ 1 (146)

Ok, how did this happen? Marc explained it to me, and it make sense. Let’s go through it
keeping in mind that A = ∂Vout

∂(V1−V2)
:

∂Vout
∂(Vin − Vout)

= A (147)

∂Vout = A∂(Vin − Vout) = A∂Vin −A∂Vout (148)

Thus we reach back:
∂Vout
∂Vin

=
A

A+ 1
≈ 1 (149)

Now that this is clear, let’s define define the input and output impedance:

Input Impedance : Zin =
dVin
dIin

→ ∞ (150)

Output Impedance : Zout = −dVout
dIout

=
1

gd
≈ VE

Ib
(151)

Due to the large voltage gain A when it was open loop (when Vout was not an input), the
transfer function is almost unity with Vout ≈ Vin now that we closed the loop. The circuit
configuration is therefore called unity-gain follower. It is used as an impedance converter (also
called a buffer) and it converts a high input impedance (because the Transconductance amplifier
draws no current) into a lower output impedance. In contrast to the source follower presented in
the simple circuit chapter, which is also used as an impedance converter, the unity-gain follower
does not introduce a large voltage offset. The measured deviation of the output signal from the
input signal, Vout − Vin, as a function of the input voltage is shown in Figure 68.B.

Long story short: it’s the perfect resistor. Doesn’t introduce gain, nor offset, and has
adjustable conductance - let’s make a filter out of it now!!

6.4.2 Follower Integrator

Figure 69: Follower Integrator circuit. The bias voltage Vb , which sets the transconductance
amplifier’s bias current Ib, can be used to modify the integrator’s time-constant. Adapted from
Lecture Notes. Adapted from textbook

This circuit is built out of a unity gain follower and a capacitor connected to the follower’s output
node. The input voltage is applied to the + terminal of the follower. If the circuit operates in
subthreshold, we can apply Kirchoff’s Current Law at the circuit’s output node and reach the
familiar looking equation:
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C
dVout
dt

= Ibtanh(
κ(Vin − Vout)

2UT
) (152)

Yes, it should be familiar, it looks a lot like what we did in the regular RC Integrator circuit,
and because if we take conductance gm = κIb

2UT
(assuming small signal regime which is why we get

rid of the tanh function), we can get back to the equation:

C

gm

dVout
dt

+ Vout = Vin (153)

Yes! This is exactly the differential equation that we derived for the low pass integrator filter
in the previous section. Beautiful isn’t it? Instead of a resistor, we used our transconductance
amplifier for which we can modulate the conductance 49. So this circuit also has the
following time constant: τ = C/gm. Note that the amplifier will operate in its linear range
provided that Vin does not change too rapidly. Specially, we need dVin

dt < 4Ut
τ . Under these

conditions, the transfer function of our RC circuit and Follower Integrator are thus identical.

What happens when dVin
dt is large? When the AC component of Vin is large, the transconduc-

tance amplifier is no longer linear and the previous relation is invalid. For very large variations in
Vin, the output current of the transconductance amplifier saturates at ±Ib, which is the asymptote

of the equation we first found (C dVout
dt = Ibtanh(

κ(Vin−Vout
2UT

)). In this condition, the transconduc-
tance amplifier acts as a constant current source rather than as a linear conductor. While the
difference |Vout− Vin| is greater than 4UT , Vout changes linearly with time. As the difference en-
ters the small signal regime, the amplifier begins to behave as a linear conductor and Vout begins
increasing (or decreasing) exponentially. Figure 70 shows the typical response of the follower-
integrator circuit to a large step voltage input. The rate of change of output voltage dV out

dt in the
region of constant slope, is defined as slew rate and is usually specified in units of V/µs. Slew
rate is one measure of the performance limit of an operational amplifier, and is proportional to
the maximum output current of the amplifier.

Figure 70: Large signal behavior of a follower-integrator. Response of the circuit to a large negative
step input (dashed line). The output voltage Vout decreases linearly for large difference Vout−Vin
values and asymptotes exponentially for small differences. Adapted from textbook

49By convention we speak of conductance for transconductance amplifier instead of resistance
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6.4.3 Delay Lines

Figure 71: Cascade of RC integrators (top) and follower integrators (down). Adapted from text-
book

We can compose (connect) multiple instances of the R-C integrator circuit, or multiple instances of
the follower-integrator circuit (see Figure 71), in sequence to form a delay line. Each section in the
delay line of follower integrators is modular (from a functional point of view) and independent
of the other sections. The current out of the transconductance amplifier of one section can charge
only the capacitor connected to the output node: It is not affected by the other sections connected
to the output node. On the other hand, the sections of the R-C delay line are tightly coupled to
one another. Current of one section flows into both the capacitor of that section and the resistor
of the next. Because the characteristics of the single R-C circuit change when connected to other
R-C circuits (as in Fig. 9.3), the transfer function of the composition of R-C circuits is not equal to
the composition of individual transfer functions. Due to the modularity of the follower-integrator
elements, the transfer function of the composition of follower-integrator circuits corresponds to
the composition of their individual transfer functions. For example, if the number of elements in
the delay line of follower integrators is n, we can simply use the transfer function of the regular
RC integrator that was derived earlier and obtain:

Vout
Vin

=
1

1 + τs

n

(154)

This is a very useful property, because it allows the frequency response properties of the delay
line to be evaluated analytically. Consider the case where sinusoidal inputs are applied to the
circuit of Follower integrator delay line. The delay line’s transfer function is:

Vout
Vin

=
1

1 + jω · τ

n

(155)

Exploiting the mathematical approximation that:

(1 + jω · τ) ≈ (1 +
1

2
(ωτ)2)ejωτ (for ωτ ≪ 1) (156)

We can write the transfer function explicitly in terms of magnitude and phase:

Vout
Vin

≈ 1

1 + n
2 (ωτ)

2)
e−jωnτ (157)

where the pre-exponential ratio is the magnitude and the exponential’s argument is the phase.
From this equation, we can conclude that the magnitude of the output signal is attenuated by
the factor 1

2 (ωτ)
2 as it crosses each section of the follower-integrator delay line, and the phase

delay introduced by each section corresponds to ωτ radians (equivalent to a time delay of τ). This
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analysis is valid provided that each follower-integrator operates in its linear region. This is very
useful to make better filters!

6.5 Laboratory : Integrator Circuits

Welcome to the time domain !
In this laboratory we study the follower-integrator circuit or FOI.
The FOI is special because its output follows the input at low frequencies, and integrates the

input at higher frequencies. If you did some signal analysis before, the FOI is your low pass filter
neuromorphic engineering edition.

We study the circuit in the time and frequency domain. For large and for small signals.

6.5.1 Time-domain response of small signal

The experiments starts at steady state. First we need to determine an input voltage that is high
enough so that the transamp is capable of operating (i.e. 0.9V). More than that, the input should
be corrected by the offset, which is a device specific operation.

At every step in the data collection phase we input this voltage to the circuit minus a small
step input (i.e. 0.09V).

In small signals, the output increases exponentially with time based on the following equation
:

Vout(t) = ∆Vin

1− e
−
t

τ

+ Vout(t = 0).

Figure 72: Step response of the follower-integrator for small signals.

To extract tau τ , we need to interpolate a function over our data and pass Vout(t) to it.
It should be higher (i.e. 0.0003) than the estimates and the Vout(t = 0) should be already

greater than (i.e. 0.9V). We can recover the moment when the input step takes place by following
the curve of Vout until it reaches 0V.

We found a kappa of around 0.8. for this experiment.
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6.5.2 Time-domain response of large signal

The experiment time-domain response over large signals requires a large input step (i.e. 0.3V).
In this regime in the first part of the graph, Vout(t) grows linear with time, therefore we can

fit a line in this range.

Figure 73: Step response of the follower-integrator for large signals.

The bias coefficient of the linear fitting gives us the slew rate (i.e 290). The bias current is
found by multiplying the slew rate to the capacitance (i.e. 1e-12). We found a bias current 45pA
higher than the theoretical expectation.

Tau and kappa in this experiment can be traced back to the linear part of the graph, therefore
kappa does not have any significance.

6.5.3 Frequency-domain response

To measure the curve of the transfer function, we input a sin wave . The output of the FOI,
follows the input current. However, it is also possible to change the regime to integrator. The
output current of the latter will be translated to the left with respect to the input.
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Figure 74: Follower Integrator, Wave Form

6.6 Things you should know

Here is a list of things you should know about this chapter for the exam:

• How to compute the time-constant of a low-pass filter and how to estimate it from measure-
ments.

• How to change the time constant of a follower integrator circuit.

• What it means to use a lowpass filter as integrator and highpass filter as differentiator

• Why the differentiator and integrator are not actually real but only an approximation over
some frequencies defined by the time constant.

• How to sketch the transfer function of a differentiator circuit, showing the time constant on
the sketch.

• How to implement a simple follower-differentiator

• How these circuits behave when driven with large signals
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7 Current Mode and Winner Take All

Current mode happens to be a relatively new thing in circuit design, and a process of its own.
This is particularly true in analog design where historically, information is represented by voltage
at nodes of circuits. In current mode, it’s just the opposite. Without entering the details of the
reason for such a switch which are complicated and beyond the scope of this module, it is found
that current-mode circuits can operate at low power-supply voltages and over a wide range of
currents. Their advantages include higher bandwidth, higher dynamic range, and they are more
amenable to lower power supplies. There are whole textbooks that have been written on only the
topic of CMOS current mode operation. Thanks to current mode circuits, we really have managed
to shring power supply: in the 90s we’re talking 5V power supply for a chip, today you have state
of the art implementation with a few milivolts as power supply, which is not a lot. There are now
a wide range of different circuits both in academia and industry using current mode circuits.

Long story short, we switch from having inputs, outputs and parameters as voltages to having
them as currents, and it happens to be better as it needs less power and some other advantages
that I sadly not fully understand yet.

What you should be comfortable with before starting to read through this chapter:

• Forward and Reverse Current from Ohmic and Saturated subthreshold MOSFET.

• Early Voltage

7.1 Translinear Circuits

7.1.1 Short intro

Before we start on explaining the translinear principle, let’s touchbase on what translinear means
altogether. Trans can mean a few different things in its Latin origin, but here, it means ”going
beyond”. So translinear kinda means that we’re going beyond linearity. But linearity of what?
Linearity of current-voltage characteristic. Yes, our course is all about operating transistors in
subthreshold and making them translinear: we have an exponential relationship between current
and voltage, and not a linear one. That’s it, that’s what this fancy terms is all about.

So a translinear circuit is a circuit that uses translinear circuit elements: MOSFETs operating
in subthreshold (or BJT) and hence in the exponential current voltage relation.

7.1.2 Translinear principle

Static tranlinear circuits were invented by the late Barrie Gilbert, and there is actually a whole
lecture on Youtube where he explains what this is all about 50. Let’s write the formal definition:
”In a closed loop containing an even number of forwardbiased junctions arranged so that there are
an equal number of clockwise-facing and counter clock-wise facing polarities, the product of the
current densities in the clockwise direction is equal to the product o the current densities in the
counter clock-wise direction.”. This actually is best visualized by looking at a simple circuit (as
opposed to the weird one shown in lecture notes):

50https://www.youtube.com/watch?v=LQNJVtcFrCc
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Figure 75: Two circuits with a translinear loop. A) Simple Translinear circuit. Adapted from
Wikipedia. B) Complicated translinear circuit. Adapted from Lecture notes.

Consider figure 75.A, you can see that there is an equal amount of clockwise facing and counter
clockwise facing polarities BJTs 51. Remember Kirchoff’s current law? (In any complete loop
within a circuit, the sum of all voltages across components which supply electrical energy (such as
cells or generators) must equal the sum of all voltages across the other components in the same
loop.). We can apply that to figure 75.A (and B as well for the matter, and let’s just focus on B
because of the notation) and observe that the voltage around the loop that goes from V1 to VN
must be 0. In other words, the voltage drops must equal the voltage increases. We call this a
translinear loop. Mathematically, this becomes

N∑
k=1

VFK = 0 (158)

If you notice on the transistors, the VFK on figure 75.B are the gate to source voltages of the
transistors. Imagining the image drew MOSFETS and not BJTs, that all transistors operate in

saturation, and that κ = 1, we have each VFK = UT ln(
Idsk
I0

). So now we can rewrite the previous
sum as follows:

N∑
k=1

UT ln(
Idsk
I0

) = 0 (159)

We can exploit the logarithm property that ln(x · y) = ln(x) + ln(y) and that ln(1) = 0 we
reach the final:

N∏
k=1

IDSk
I0

= 1 (160)

The reason why this is useful will be visible soon enough. But mostly, if we have a circuit with
a loop where sum of voltages is 0, we’ll be able to apply this principle and we’ll be happy.

7.2 The Current Conveyor

7.2.1 Introduction

In voltage-mode circuits, the main building block used to add, subtract, amplify, attenuate, and
filter voltage signals is the operational amplifier. In current-mode circuits, the analogous building
block is the current conveyor. It really originates from a need to have a current mode equivalent

51Yes, the images are shown with BJTs rather than MOSFETs. Don’t worry too much about it.
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of the op-amp for the current mode function - which is funny because the idea of current conveyor
was subsequently invented before the circuit was invented (discovered/engineered or whatever you
want to call it).

Figure 76: The current conveyor representation (not circuit). Adapted from Textbook.

If we want to do current mode computation, we need a building block that can convey current
from input terminl to output terminl while decoulpling the circuit, just like an op-amp where V1
and V2 are the input which come with infinite impedance, and then you have the output Vout - so
you completely decouple the input from the output. We need the same in current mode. We also
want to use this builidng block to do basic computations (add, multiply, filter etc...). Here is the
formal definition:

• The potential at the output terminal (Z) is independant of the current applied at node Y

• An input current that is forced into node X results in an equal amount of current flowing
into node Y.

• The input current flowing into node X is conveyed to node Z, which has the characteristics
of a high output impedance current source.

Figure 77: A circuit which satisfies the current conveyor definition. Adapted from Lecture notes.

Briefly looking at Figure 77, which is a potential current conveyor, the input terminals are
X and Y , the output is at Z. If you apply a current through Y , it results in the same current
through X because of the current mirror, which is copied again at M3 and M4 which yields that
whatever flows through Y is conveyed to Z. Again this is just one example of a current conveyor,
which actually is just unity in this circuit.
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7.2.2 Basic subthreshold current conveyor

Figure 78 shows a current conveyor that is commonly used at the Institute of Neuroinformatics,
and the one we should know about.

Figure 78: A more common current conveyor circuit. This is the one you should know for the
exam. Adapted from Lecture notes.

Here we force a current into node Vy which is copied into node Vx. How does that work? Let’s
go through it:

• If you force the current Iy through M3, the gate voltage of M3 must adapt to the log of the
current flowing through it 52. So Vx ∝ ln(Iy).

• Now we set Ix (which is another input of the circuit) to be equal to Iy (or proportionality
factor of Iy), we will exactly like before force the Vgs = Vy − Vx of M5 to follow log(Ix).

• This then results into Iz which must follow Ix

• So to summarize, two take aways about this: 1) Iz = Ix and 2) Vx ∝ ln(Iy)

• It decouples input current from output current, i.e. while the input and the output current
are equal, the voltage at the output is independent of the input current.

It’s used in a broad range of circuits such as:

• Low pass filters

• Multiplier circuits

• Winner take all circuits

• Silicon Neurons

• Current-mode silicon retinas

52because (omitting κ, I0 and UT for simplicity: I = exp(Vgs) so Vgs = log(I))
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7.3 The current conveyor as a multiplier

Figure 79: Current conveyor as a multiplier. Adapted from Lecture notes.

Let’s look at what this circuit does. The first thing to notice is that building block (on the left)
is exactly the current conveyor we’ve seen before, with Ix, Iy and Iz etc. Now, let’s look at the
Vgs’s, remembering the translinear principle. Look at the red arrows representing the Vgs of each
transistor: two of them (on the left) go from ground and the two others (on the right) go into
ground. Yes! The translinear principle applies. Let’s put that formally:

• First Vgs1 = Vx − 0

• Second Vgs2 = Vy − Vx

• Third Vgs3 = Vy − Vw

• Fourth Vgs4 = Vw − 0

Applying the translinear principle, this yields:

(Vx − 0) + (Vy − Vx)− (Vy − Vw)− (Vw − 0) = 0 (161)

→ Vgs1 + Vgs2 − Vgs3 − Vgs4 = 0 (162)

→ Ix · Iy · Iw−1 · Iz−1 = 0 (163)

Yielding the elegant : Iz =
Ix · Iy
Iw

(164)

One must remember that this is an approximation as we assumed in the translinear principle
derivation earlier that κ = 1, which is not true in practice. As a reminder, κ is usually 0.7-0.8 in
practice.

7.4 The Gilbert Normalizer

I think this circuit is not to be known for the exam but it’s way too elegant not to look at. Let’s
keep it quick:
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Figure 80: Gilbert Normalizer circuit. Adapted from Lecture notes.

We assume subthreshold and saturation in all transistors:
Because of Kirchoff’s current law, the sum of currents flowing through each branch Ioutj must

be equal to Ib: Let’s now note some things about Iin and Iout relationship, which is just driven
by a current mirror arrangement.

Iini = I0e
κVdi
UT (165)

Iouti = I0e
κVdi
UT

−κVc
UT = Iine

−κVc
UT (166)

Since Ib =
∑
j

Ioutj (167)

By using the nice trick of multiplying equation 166 by Ib
Ib

= Ib∑
j Ioutj

= 1, we reach:

Ioutj =
Ib
Ib
Iine

−κVC/UT =
Ib∑
j Ioutj

Iine
−κVC/UT =

IbIine
−κVC/UT

e−κVC/UT
∑
j Iinj

(168)

Thus reaching : Ioutj = Ib
Iinj∑
j Iinj

(169)

Hence implementing some kind of normalization of all Ioutj flowing. Pretty cool!

7.5 Winner Take All circuit

A winner-take-all (WTA) circuit is a network of competing cells (neural, software, or hardware)
that reports only the response of the cell that has the strongest activation while suppressing the
responses of all other cells. The circuit essentially implements a max() function. These networks
have been implemented in analog VLSI and applied to a wide variety of tasks, including selective
attention, auditory localization, visual stereopsis, smooth pursuit/tracking, detection of heading
direction and more. Today, it’s a circuit that is basically everywhere.

What’s the biological basis behind Winner Take All? It really is believed that populations
of neurons do some kind of selective amplification to the broad range of input signals that they
receive. Imagine you’re at a loud cocktail party and there is a lot of noise but you suddenly hear
your name being said, your brain will instantly cancel out everything else but the origin of the
sound that you recognized as your name (localization and pitch/frequency of the voice). This is
just one example. Anyways, in general, these circuits are typically used to implement and model
competitive mechanisms among population of neurons. In this section we will analyze a class of
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WTA networks that emulate biological networks, consisting of a cluster of excitatory neurons that
innervate a global feedback inhibitory neuron.

Figure 81: Current Mode Winner Take All. Adapted from Lecture.

The circuit of Fig. 81 is a continuous time, analog circuit that implements a WTA network. It
processes all the (continuous-time) input signals in parallel, using only two transistors per input
cell, and one global transistor that is common to all cells. Collective computation and global
connectivity is obtained using one single node common to all cells. As can be seen in Fig. 81,
each cell is built out of a current conveyor. The WTA network is modular and can be extended to
N cells, by connecting additional cells to the node Vc. Input currents are applied to the network
through current sources which are implemented for example using subthreshold pFETs. There
are three conditions that determine the functionning of this WTA circuit, and we’ll look at each
of them individually.

7.5.1 Iin1
= Iin2

= Iin

You should intuitively see (also from the previous normalizer circuit) that when Iin1
= Iin2

,
Iout1 = Iout2 = Ib/2. Let’s see how that works formally. First, from the current conveyor, we
established that Vc ∝ ln(Iin), which if written formally gives:

Vc =
UT
κ

ln(
Iin1

I0
) (170)

Because Iin1 = Iin2 , it follows that Vd1 = Vd2, which yields that Iout1 = Iout2 = Ib/2. As
simple as that.

To remember:

• Vc =
Ut
κ ln(

Iin
I0

)

• Iout1 = Iout2 = Ib

• Vd1 = Vd2 ≈ Vc + Vb

7.5.2 Iin1
≫ Iin2

This is a bit trickier. We first need to recall from Chapter 2 and 3 that the subthreshold current
flowing through a transistor can be divided into a forward component, If and a reverse component,
Ir. When the transistor’s source voltage V s is approximately equal to its drain voltage V d (so
when we are in the Ohmic region), Ir becomes comparable to If . Now let’s just keep this property
in mind and look at the circuit for the case where Iin1

≫ Iin2
.
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When Iin1 ≫ Iin2 , if the drain voltage of M1 is in saturation, the dominant component of
its drain current will be in the forward direction and its gate voltage Vc will increase such that
Id1 = If 1 = I0e

κVc/UT = Iin1
. Although the two input currents Iin1

and Iin2
are different,

the forward component of the drain currents of M1 and M2 are equal (If1 = If2) because the
two transistors have a common gate voltage Vc, and both their sources are tied to ground. The
drain current Id2 of transistor M2 can only be equal to the input current Iin2 under the following
conditions:

If 2 − Ir2 = Iin2
(171)

which implies that : Ir2 = If 2 − Iin2
(172)

which implies that : Ir2 = Iin1
− Iin2

>> 0 (173)

The reverse component of Id2 becomes significant only if Vd2 decreases enough for M2 to
operate in its ohmic region. In this case, the output transistor M4 is effectively switched off, and
Iout2 = 0. Consequently, M3 sources all the bias current (Iout1 = Ib), with Vd1 satisfying the
equation Ib = I0e

κVd1−V c.
To remember:

• Vc =
Ut
κ ln(

Iin1

I0
)

• Iout1 = Ib; Iout2 = 0

• Vd1 = Vc + Vb

• Vd2 ≈ 0

Typical δV that make this condition apply are actually as small as 5mV. It’s only when δV
is smaller than this that we are in the operating regime described below.

7.5.3 Iin1
= Iin2

± δIin

To analyze the circuit in this regime, we must consider the Early effect of the transistor operating
in the saturation region. Recall that considering the Early Effect, current in a transistor in
saturation is:

Ids = Isat(1 +
Vds
Ve

) (174)

where Ve is the early voltage.
Assume that the two input currents Iin1

and Iin2
are initially equal. In this case, the transistors

M1 and M2 operate in saturation region: the output voltages Vd1 and Vd2 will settle to a common
value and the output currents Iout1 and Iout2 are both equal to Ib/2 as established previously. If
we now increase the input current Iin1 by a small amount δI and apply the previous equation to
transistor M1, then the drain voltage Vd1 increases by:

δV =
δI

Isat
Ve (175)

As Vd1 is also the gate voltage of transistor M3, the Iout1 will be amplified by an amount
proportional to eδV . The constraint of Kirchoff’s current law imposes that Iout2 decreases by the
same amount in steady state. This reduction means that gate voltage Vd2 of M4 must decrease
by δV .

The gain of the competition mechanism δV
I in the small signal regime is directly proportional to

the Early voltage and inversely proportional to Isat. The Early voltage depends on the geometry
of the transistors and is fixed at design time. On the other hand Isat depends on Vc, which changes
with the amplitude of the input currents.

To remember:

• Ids = Isat(1 +
Vds
Ve

)

• Vd2 = Vd1 − Ve
δI
Isat

• Iout2 < Iout1
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7.5.4 Experimental data

We can see experimental data on figure 82.

Figure 82: Responses of the current conveyor two-cell WTA circuit. a) Voltage output (Vd1 and
Vd2) versus the differential input voltage. (b) Current output (Iout1 and Iout2). The bias voltage
Vb = 0.7V. The small difference in the maximum output currents is due to device mismatch effects
in the read-out transistors of the two cells. Adapted from textbook.

We can see the output voltages (Vd1 and Vd2) and output currents (Iout1 and Iout2) of the
circuit, in response to the differential input voltage δV which encodes the ratio of the input
currents that were provided by pFETs operating in subthreshod. Vin1 was set to 4.3V while the
gate voltage of the input current pFET Vin2 was set to Vin2 = Vin1+ δV , thereby allowing to test
all different three case scenarios by changing δV . We can clearly see that experimental result go
well with our theoretical findings!

7.6 Things you should know

Here is a list of things you should know about this chapter for the exam:

• What’s the idea behind current mode circuits?

• What are the 3 principles of a current conveyor.

• Draw the basic current conveyor, and work through its function.

• Draw and explain the function of the Gilbert Normalizer.

• How does the WTA circuit work.

• Can you reason through its behavior?

• How does the bias current affect the performance of the WTA?
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Figure 83: Simple circuit of a VLSI synapse in a pulse-based neural network.

8 Silicon Synapses

So far, we have seen several circuits that demonstrate fairly complex functionality by using only a
small number of circuit elements. But what does this all have to do with Neuromorphic Engineer-
ing? Didn’t we want to emulate the behaviour of neural systems? It turns out that by combining
the previously introduced circuits we are actually able to create circuits that have very similar
properties to real cortical synapses and neurons. In this chapter, we look into VLSI synapses.
Make sure that you are familiar with chapter 0.2 and 0.3.1 where we briefly introduced neurons
and synapses as well as the Perceptron, a very simple artificial neuron model. In the Perceptron
model, the synapse implements the multiplication between the neuron’s input signal Xi and its
corresponding weight Wi. Silicon synapses in ”classical” neural networks similarly only act as
multipliers. However, we want to emulate neural systems and are therefore interested in a more
biologically plausible synaptic behaviour. Biological systems communicate with spikes, i.e. short
activation ”pulses”. So how can we generate a similar weighted pulse with our silicon synapse?

8.1 VLSI Synapses in Pulse-based Neural Networks

Figure 83 demonstrates the simplest circuit to generate an output pulse. It consists of two pFET
transistors and one capacitor. The pFET MOSFET on the top receives an input in the form of
a gate voltage change. By decreasing the gate voltage, a current is generated. The strength of
the current is shaped by the lower pFET whose gate voltage Wi we can adjust. The generated
current Iwi finally charges the circuit’s capacitor and the charging and the discharging of the
capacitor creates our desired voltage ”spike” as shown on the right. Based on the capacitor
equation C dV

dt = I, we can describe the voltage change as follows:

∆Vi =
Iwi
Cmem

∆t (176)

The above equation demonstrates that the strength of the output spike can be changed by
either changing the bias voltage Wi which shapes the current Iwi or by changing the duration
∆t of the input. The demonstrated circuit allows us to implement an excitatory synapse. By
replacing the pFETs with two nFETs (connected to ground instead of Vdd), the generated current
Iwi flows into the opposite direction. The capacitor is consequently discharged first and we get
an inhibitory synapse. As we are using a current source - our Iwi - to (dis)charge the capacitor,
the voltage changes linearly. This is however not biologically plausible. In biological systems,
a synapse acts as a linear integrator. If you recall chapter 6.3, an integrator is equivalent to a
low-pass filter. Its impulse response is a decaying exponential. Remember that in subthreshold,
there is an exponential relationship between the voltage and the current, e.g. as shown in the
equation of a saturated pFET in subthreshold:
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Figure 84: Exponentially decaying integrator circuit.

I(t) = I0e
κ
UT

(Vdd−Vg(t)) (177)

If we linearly change the gate voltage, we get an exponential change of current. So let’s use
this intrinsic property of subthreshold MOSFETs to build a biologically plausible synapse.

8.2 Exponentially decaying integrator circuit

Figure 84 shows the circuit of an exponentially decaying integrator that exploits the exponential
behaviour of subthreshold MOSFETs and shows similar behaviour to a synapse. We assume
that all transistors operate in subthreshold and in saturation. Consequently, we get the following
equations for the circuit’s currents:

Iw = I0e
κVw
UT (178)

Iτ = I0e
κ(Vdd−Vτ )

UT (179)

Ic = C
d

dt
(Vdd − Vsyn) (180)

Isyn = I0e
κ(Vdd−Vsyn)

UT (181)

Let’s go through the circuit’s behaviour step by step. We assume that initially the capacitor
is fully charged, so Vsyn = Vdd. As Vsyn is also the gate voltage of the pFET Msyn, this means
that there is no current Isyn flowing. When we get a pulse input, i.e. a positive gate voltage at
transistor Mpre, we generate a current flow. The strength of the current is dependent on the gate
voltage of the above transistor Mw and we therefore denote the generated weighted current as Iw.
You might wonder why we use two transistors to generate our weighted input. By separating our
weight factor from the input pulse, we are able to process digital inputs that are either completely
on or completely off. Additionally, we can introduce dynamic behaviour to our weighting factor
Vw. This will be introduced in more detail in section 8.4.1. We can assume that our genereated
input current Iw is always significantly larger than the current Iτ . Consequently, we have a
constant current flowing out of the capacitor, i.e. discharging it, and a linear decrease of Vsyn.
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Figure 85: Log-domain pulse circuit.

This decrease leads to Vgs > 0 in the pFET Msyn and we get an output current Isyn. When there
is no pulse input at Mpre anymore, no current Iw is flowing. The current Iτ now flows into the
capacitor and linearly charges Vsyn until it reaches Vdd again. Due to the exponential relationship,
the linear increase of Vsyn causes an exponential decrease of Isyn until the output is completely
shut off. The charge and discharge phase of the circuit can be described by the following equations:

Isyn(t) =

 I−syne
+

(t−t−
i

)

τc (charge phase)

I+syne
−

(t−t+
i

)

τd (discharge phase)

(182)

We can rewrite the equation for Isyn as follows:

Isyn(t) = I0e
n∆t( 1

τc
+ 1
τd

)− t
τd = I0e

− τc−f∆t(τc+τd)
τcτd

t
(183)

where n is the number of input spikes and f = n
t the spike frequency. Note that for a large spike

frequency, the capacitor does not have the time to charge up again. The voltage Vsyn eventually
saturates at 0 and the resulting output current Isyn becomes constant and independent of the
input spikes. Looking at the above equation of Isyn, this is the case when the exponent becomes
a positive value and eventually ”explodes”. We therefore get the following condition for our spike
frequency:

f∆t(τc + τd) > τd =⇒ f < (
τc

τc + τd
)
1

∆t
(184)

8.3 Log-domain Pulse Integrator

A similar circuit with synaptic behaviour is the log-domain pulse integrator. It is shown in figure
85. The only difference compared to the previous circuit is that the transistorMw is replaced by a
pFET and its n-well is now connected to the source voltage Vsyn. Why do we do that? Remember
from chapter 3.9.4 that transistors are usually distorted by the body effect. By connecting the
n-well to Vsyn, we can cancel out this effect and thereby ensure that the thresholds of the Mw and
Mτ transistors remain similar. The updated equation of the weighted input current is:
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Iw = I0e
κ
UT

(Vsyn−Vw)
(185)

Let’s try to find an analytical description for our output current Isyn. First, we want to know
how our current changes over time.

d

dt
Isyn = −Isyn

κ

UT

d

dt
Vsyn (186)

With τ =
CsynUT
κIsyn

:
d

dt
Isyn = −Isyn

κ

UT

d

dt
Vsyn (187)

With Ic = Iτ − Iw : τ
d

dt
Isyn = −Isyn + Isyn

Iw
Iτ

(188)

We can further rewrite our input current Iw as follows:

Iw = I0e
− κ
UT

(Vw−Vsyn) = I0e
− κ
UT

(Vw−Vdd)e
κ
UT

(Vsyn−Vdd) = Iw0
I0
Isyn

(189)

where Iw0 is the current Iw at the beginning of the charge phase, i.e. when Vsyn = Vdd. By
using this new equation of Iw, we can get the following differential equation for our output current
Isyn:

d

dt
Isyn + Isyn =

I0Iw0

Iτ
(190)

While this circuit provides a good approximation of synaptic behaviour, it highly restricts our
control of the output current Isyn. Both I0 and Iτ are fixed values. Additionally, we have to
ensure that Iw remains in subthreshold (I w has to be large because the fixed factor is small). So
how can we construct a more controllable silicon synapse?

8.4 Diff-Pair Integrator (DPI) Synapse

The diff-pair integrator (DPI) synapse is visualized in figure 86. It is named after its main
component, a differential pair circuit. In order to understand its behaviour, we will analyze its
complementary circuit shown in figure 87 instead. The circuit in figure has the advantage that
we can apply the translinear principle to it. The principle states that all gate-to-source voltages
within a closed loop add up to zero. Note that the arrows always show from the source to the
drain of the transistor. We get the following sum of voltages:

(Vg − 0)− (Vg − Vs) + (Vc − Vs)− Vc = 0 (191)

As we have seen in chapter 7.1.2, we can transform the above sum to a product of currents.
Note that when we subtract the gate voltage of a pFET, we multiply the positive current of the
corresponding transistor. We therefore get:

IthI1I
−1
2 I−1

out = 1 =⇒ IthI1 = I2Iout (192)

Because of Kirchhoff’s current law, we know that: Iin = I1 + I2 and I2 = Iτ + Ic. We replace
the currenst in above equation and get:

Ith(Iin − Iτ − Ic) = (Iτ + Ic)Iout (193)

Now we would like to find an alternative equation for Ic that is independent of the voltage.

Iout = I0e
κVc
UT (194)

d

dt
Iout = Iout

κ

UT

d

dt
Vc =⇒ d

dt
Vc =

d

dt
Iout

UT
κIout

(195)
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Figure 86: VLSI circuit of a diff-pair integrator (DPI) synapse.

Figure 87: Complementary VLSI circuit of the DPI synapse.
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Ic = C
d

dt
Vc =⇒ Ic = C

UT
κIout

d

dt
Iout (196)

By inserting this equation into (193) and rearranging, we get the following nonlinear differential
equation for our output current:

τ(1 +
Ith
Iout

)
d

dt
Iout + Iout =

IthIin
Iτ

− Ith (197)

where τ = CUT
κIτ

. So what happens now when we get a positive input current Iin? As soon as
Iin becomes larger than Iτ , the capacitor is being charged. This leads to a linear increase of Vc,
assuming a constant current input. Due to the exponential relationship between gate voltage and
current, Iout consequently starts to increase exponentially. As Ith is a constant, the term Ith

Iout
in

the above equation eventually becomes zero when we have an input current. Similarly, the term
Ith on the right hand side of the equation becomes negligible for Iin ≫ Iτ as Iin

Iτ
≫ 1. We can

therefore simplify (197) to the following linear differential equation:

If Iin ≫ Iτ : τ
d

dt
Iout + Iout =

Ith
Iτ
Iin (198)

Unlike the previously introduced circuits in section 8.2 and 8.3, the behaviour of our synapse
is now dependent on a variable current, Ith. This allows us to easily control our circuit’s output.

There are two important things to note about the derived circuit. For simplicity, we previously
assumed that κ = 1. However, in reality κ is usually around 0.7. In the DPI synapse, it turns
out that all κ values cancel each other out. We therefore only have to ensure that all κ values are
equal, in particular κN = κP but we do not have to assume that κ = 1 anymore. Consequently,
our derived equations very precisely model the circuit’s actual behaviour. Another observation we
make is that our calculations exploit the linear range of operation of the circuit’s differential pair.
We therefore have to ensure that Vg and Vs are within a similar range, i.e. that |Vg −Vs| is small.

Let’s have a look at our DPI synapse in figure 86 again. Based on the same derivations, its
behaviour can be modelled by the same linear differential equation:

If Iw ≫ Iτ : τ
d

dt
Isyn + Isyn =

Ithr
Iτ

Ith (199)

where τ = CUT
κIτ

. The only difference is that our input current Iin is represented by the
weighted current Iw. Our resulting circuit provides a biologically plausible and controllable model
of a cortical synapse.

8.4.1 Short-term Depression

In biological systems, the response of a synapse decreases when it receives input spikes at a high
rate. This phenomenon is called short-term depression. It is visualized in figure 88. At the bottom
of the figure, we see the firing pattern of the presynaptic neuron. As shown at the top of the fig-
ure, the synaptic information the postsynaptic neuron receives continuously decreases with every
incoming spike. By using two different transistors Mpre and Mw to separate our input pulse from
its weight, we are actually able to implement this behaviour by replacing Vw with an additional
circuit. This circuit is shown in figure 89.

The bottom transistor receives the same input pulse as our transistorMpre in the DPI synapse.
Whenever we receive a pulse, i.e. an increase of the gate voltage, we generate a current Ir. This
current flows out of the capacitor Cd, consequently discharging it and reducing the capacitor’s
voltage Vw. This is the voltage we use as the weighting gate voltage in our DPI synapse. The
more pulses we receive, the more current flows out of the capacitor and the lower Vw becomes.
When we don’t receive any input pulses, the diode Va eventually charges up the capacitor again
and we retrieve our initial weighting voltage Vw.
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Figure 88: Membrane voltage of a pre- and postsynaptic neuron that undergo short-term depres-
sion.

Figure 89: VLSI circuit that implements short-term depression.
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Figure 90: The response of the DPI synapse to a spike train (left) and the Rectified Linear Unit
(ReLU) function (right).

There is one very interesting thing to note when comparing the frequency of our input pulses
with the frequency of our output spikes. This relationship is shown in ??. First of all, the impact
of our weight onto our output becomes clear. As expected, the higher our weight, the higher
our output frequency. But more importantly - does the shape of the graph look familiar to you?
Exactly, it is a ReLU function! For those unfamiliar with it, the ReLU (Rectified Linear Unit)
function is an activation function that is very commonly used in neural networks. Its output is
zero for any negative input or the positive input itself. Its shape is shown in figure ??. So why
don’t we simply use a ReLU function instead of our complex synapse circuit? When we are only
interested in applying a ReLU activation onto our inputs, this is indeed the better way. The
introduced synapse circuits, however, allow us to incorporate more complex dynamic behaviour
that also occurs in biological synapses.

8.5 Laboratory :Silicon Synapses

In this session, we study how synaptic circuits generate current when stimulated by voltage pulses.
Specifically we will measure the response of a synapse to a single pulse, and to a sequence of spikes.

To this extend, we will measure the response properties of the diff-pair integrator (DPI) synapse
.

8.5.1 DPI synapse

The DPI synapse receives a voltage pulse train, Vpulse, as input and outputs a corresponding
synaptic current, Isyn and voltage Vsyn. Bias parameters Vweight Vtau affect the amplitude and
decay of the response, while Vthr acts as an additional weight bias. Csyn sizing was chosen for a
capacitance of 2pF.

We need to tune these parameters and observe the behavior of the DPI synapse. To test the
basic response of the circuit we send 2 input pulses and sample 10 points, with a delta t of 0.02
between the samples.
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Figure 91: Measured values of Vsyn as a function of time

Figure 92: Measured C2F values of Isyn as a function of time

We found that if we increase Vweight or Vthr the amplitude of Isyn increases and Vsyn will need
more time to recharge and return back to it’s initial state (1.8V).

With a larger Vtau or Vpulse the opposite is truth. The amplitude of Isyn shrinks and Vsyn
returns to the pre-spike state much faster.

8.6 Test Yourself

You should be able to answer the following questions for the exam (mainly taken from the winter
study sheet).

• The schematic for a synapse circuit.

• How the synaptic current changes as a function of the presynaptic frequency and the synaptic
weight.
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• How the firing frequency of an adaptive neuron changes as a function of the presynaptic
frequency and the biases to the adapting synapse.

• Which differential equation describes the output current of the DPI synapse? Under which
condition does it hold?

• What are the advantages of using two separate transistors for the input pulse?

• How can we implement short-term depression?

• What is the disadvantage of the Log-domain pulse integrator?
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Figure 93: Conductance-based silicon neuron.

9 Silicon Neurons

In the previous chapter, we introduced a biologically plausible circuit that models the behaviour
of a cortical synapse. Synapses are responsible for transmitting information between neurons.
Neurons themselves act as integrator circuits that integrate over their inputs and generate an
action potential once their integrated input crosses a threshold. Figure 11 in section 0.2 visualized
the typical course of an action potential. Let’s have a look how we can model an equivalent
behaviour with our VLSI circuits.

9.1 Conductance-based silicon neuron

In 1991 Misha Mahowald and Rodney Douglas developed a conductance-based silicon neuron that
demonstrates remarkably similar properties to those of cortical neurons. The proposed circuit is
shown in figure 93. It consists of three part - the passive leak current of the cell membrane, the
positive feedback of an action potential that is regulated by sodium in cortical neurons and the
negative feedback that is regulated by potassium.

Passive component

Let’s have a look at the circuit’s passive component at first. It consists of a follower integrator
with output voltage Vmem and input voltage Eleak. The input voltage represents the circuit’s
resting potential. Remember that the behaviour of the follower integrator can be described by the
following equation:

C
d

dt
Vout = Ibtanh(

κ(Vin − Vout)

2UT
(200)

The change in output voltage is dependent on the capacitor’s capacitance and the output
current of the transconductance amplifier. If Vmem = Eleak, we don’t have any output current
and consequently the capacitor is neither charged nor discharged. Our output voltage Vmem re-
mains unchanged. If Vmem becomes larger than Eleak, a negative current is generated. This
current discharges the capacitor and Vmem decreases until it equals Eleak again. On the other
side, when Vmem is smaller than Eleak, we get a positive current that charges the capacitor until
Vmem = Eleak. Just looking at our passive component, the membrane voltage always get pulled
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back to the resting potential Eleak.

Sodium positive feedback component

The circuit’s positive feedback component consists of another follower integrator and two
transconductance amplifiers. Remember from section 5.2.3, that the transconductance ampli-
fier acts as a comparator if it is operated in voltage mode. Vout converges towards ground if the
input V+ is larger than V− and towards Vdd if V− > V+. If the circuit’s membrane voltage Vmem
is smaller than Vthr, we get a large output voltage Vout in the lower transconductance amplifier of
the sodium component. This voltage is connected to the gate voltage of a pFET current mirror
and we consequently have no output current INa. Once our membrane voltage is increased by a
positive input signal, Vmem eventually becomes larger than Vthr and the output voltage Vout starts
to converge towards zero. This decrease of the gate voltage generates a current flow in the pFET
current mirror and we get a positive current INa. This current is equivalent to the current that

pushes into our transconductance amplifier as defined by its equation Iout = Ibtanh(
κ(Vthr−Vmem)

2UT
,

denoted as INa,on. Note that the source of our current mirror is not set to Vdd but to ENa. Like
this we can ensure that our current is bound by ENa. As the connection between INa and the
membrane voltage Vmem acts as a capacitor, Vmem increases which leads to an even larger current
INa. This is the circuit’s positive feedback loop. At the same time, Vmem is the input voltage of
the component’s follower integrator. Once Vmem starts to increase, the output voltage adapts to
the input voltage with a time delay. This delay is dependent on the integrator’s capacitance and
its bias voltage, denoted as VτNa as described in section 6.4.2. Once the output voltage becomes
larger than the threshold voltage Vthr of the top transconductance amplifier, the output voltage
converges towards zero and we generate a current flow at our pFET current mirror. This generated
current, denoted as INa,off , is connected to the output current of our previous transconductance
amplifier. For INa,off = INa,on, all the current that pushes into our transamp is pulled from
INa,off . Consequently, there is no input current into our low current mirror anymore and INa
becomes zero. The top transconductance amplifier is therefore responsible for switching off the
positive feedback loop again.

Potassium negative feedback component

A similar behaviour can be observed in the negative feedback, i.e. the potassium, component
of the circuit. The source follower delays the increase of Vmem dependent on its bias voltage VτK .
Once Vmem becomes larger than Vthr in our transconductance amplifier, our output current IK is
copied by two current mirrors. The resulting current is also connected to the membrane voltage.
As it pulls away from the connecting node, an increase of IK decreases Vmem. You might wonder
why we are using two current mirrors. First of all, we have to ensure that our current flows in
the right direction to decrease the membrane voltage. Additionally, the nFET current mirror is
not set to ground but to EK . Similar to the positive feedback component, this ensure that IK is
bound by EK .

The problem of the proposed circuit is that its behaviour is dependent on a large number
of transistors. As introduced in section 3.9.2, the expected behaviour of individual transistors
can vary up to 20% due to variations in their fabrication. For a large number of transistors, it
becomes impossible to tune all involved variables of the circuit to get the required functionality.
We therefore aim to keep our ciruits as minimal as possible.

9.2 Axon-hillock circuit

How can we model the behaviour of cortical neurons, i.e. their ability to generate an action po-
tential when the sum of the synaptic inputs reaches a certain threshold, with a minimal circuit
to reduce the negative impact of device mismatch? One such circuit (which you should be able
to explain at the exam) is the Axon-hillock circuit. It is an integrate-and-fire neuron model that
was proposed by Carver Mead in the late 1980s. It has positive feedback (similar to sodium in
neurons), negative feedback (similar to potassium), and a membrane capacitance. The circuit
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Figure 94: Axon hillock circuit.

schematic is shown in figure 94. The amplifier acts as a comparator between its input voltage
Vmem and a threshold voltage Vth that is not explicitly denoted in the schematic.

The behavior of the Axon-hillock circuit can be explained as follows:

1. At the beginning, we don’t have any input current and our membrane potential Vmem is
zero. Consequently, our non-inverting amplifier also has a zero output voltage which acts as
the gate voltage of the reset transistor that is turned off. For now, we ignore the positive
feedback component of the circuit.

2. With constant input current, the increase in charge at the capacitor Cmem leads to a linear
increase of Vmem.

3. When Vmem crosses the threshold voltage Vthr of the amplifier, the output Vout will go from
zero to Vdd. We now have a positive gate voltage that turns on our reset transistor and
generate a current Ir.

4. With Ir larger than Iin, the capacitor discharges and Vmem decreases again until the amplifier
switches off, which turns Vout back to zero. Consequently, the current Ir become zero again
and the charging of the membrane voltage restarts.

In reality, however, our Vmem is not in- or decreasing perfectly linearly but is distorted by
noise. When it comes close to the threshold, the noise causes the membrane voltage to fluctuate
below and above threshold and therefore leading to a fluctuating output voltage as well. How
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Figure 95: Capacitive divider within the Axon Hillock circuit.

can we prevent these fluctuations from happening? By introducing an additional capacitor to the
circuit which acts as a positive feedback, we are able to make our membrane voltage more robust
towards noise.

But how exactly does the positive feedback work? By adding a second capacitor, we get a
capacitive divider circuit as shown in figure 95. Assuming that the charge within the circuit is
constant, the following equation describes our circuit:

Q = C1V1 + C2(V1 − V2) = constant (201)

We are interested in the circuit’s behaviour when our voltage changes, as is the case when our
output voltage jumps to Vdd once we cross the threshold voltage. With ∆Q = 0 for a constant Q,
we get:

C1∆V1 + C2(∆V1 −∆V2) = 0 (202)

∆V1 =
C2

C1 + C2
∆V2 (203)

∆Vmem =
Cfb

Cm + Cfb
Vdd (204)

The positive feedback inserted back into our membrane voltage corresponds to a fraction of
Vdd as shown in (204). Thanks to our positive feedback, we push our membrane voltage away
from the threshold voltage to prevent any fluctuations caused by noise.

Let’s have a look at the dynamics of our circuit. We want the amplitude of our input to be
linearly proportional to the frequency of our output. We denote tL as the time between two spikes,
hence 1

tL
is the spike frequency, and tH as the pulse width of our spikes. Inbetween two spikes,

our membrane voltage is below threshold while our capacitors are charging up and we only have
an input current Iin. As our capacitors are operated in parallel, we can calculate tL:

Iin = (Cfb + Cm)
∆Vmem
tL

=⇒ tL =
Cfb + Cm

Iin
∆Vmem =

Cfb
Iin

Vdd (205)

We can see that the frequency 1
tL

is proportional to the input current Iin. We can calculate
the pulse width in the same way.

tH =
Cfb

Ir − Iin
Vdd (206)
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Figure 96: The slow switching time of an inverting amplifier generates a large current flow from
Vdd to ground.

Figure 97: A more elaborate circuit of an integrate-and-fire neuron.

Assuming that the reset current Ir is significantly larger than Iin, we get a proportional rela-
tionship between the pulse width and 1

Ir
.

In the initially proposed circuit, the non-inverting amplifier was implemented with two in-
verting amplifiers. These, however, require several milliseconds to switch and while Vin is close
to the threshold voltage, a large amount of current flows from Vdd to ground. This behaviour
is visualized in 96 and it causes the Axon-Hillock circuit to have a large power consumption. In
order to overcome this drawback, a non-inverting transconductance amplifier that quickly switches
its output voltage without generating a large current was added in an improved version of the
circuit in the late 1990s. The more elaborate circuit schematic is shown in figure 97. The two
inverting amplifiers now receive the quickly switched output voltage from the transamp as an
input. The resulting circuit is low-power, has an explicit voltage threshold and additionally allows
to model the refractory period of real spikes. However, it still constantly burns power because of
the transconductance amplifier that is always turned on.

In this chapter, we introduced silicon neuron circuits for both a conductance-based neuron
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model as well as a less complex integrate-and-fire neuron model. Traditionally, these are the two
main classes of neuron models. In recent years, however, there have been advances to bridge the
gap between both classes and generalized integrate-and-fire neuron models have been introduced.
These models are able to model many aspects of the complex behaviour of conductance-based
neurons while maintain their rather simple structure. This is not relevant for the exam but an
interesting outlook onto future research.

9.3 Test Yourself

You should be able to answer the following questions for the exam (mainly taken from the winter
study sheet).

• What is a neuron and what are its components (synapse, soma, dendrite)?

• What types of models are used to simulate neurons?

• How does the spike-generating mechanism work?

• What is an FI curve?

• Can you draw the circuit schematic of the axon-hillock neuron?

• What are the components of the conductance-based neuron?

• What is its disadvantage?

• How can we implement a time delay?

• Why do we need a positive feedback in the axon-hillock circuit?

• What is the drawback of the circuit’s initial amplifier and how does it occur?
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10 Photosensors and circuits

This chapter is a sort of culmination of everything we’ve learnt. It is also, in my opinion the most
dense and challenging to understand. Throughout writing it, I have tried my best to only give
the necessary information and avoid overload of details.

Before starting, it is critical to make sure you understand well the following concepts covered
previously:

• The PN Junction and Diode.

10.1 Prelude: Motivation

”Over the past 600 million years, biology has solved the problem of processing massive
amounts of noisy and highly redundant information in a constantly changing envi-
ronment by evolving networks of billions of highly interconnected nerve cells. It is
the task of scientists—be they mathematicians, physicists, biologists, psychologists, or
computer scientists—to understand the principles underlying information processing
in these complex structures. At the same time, researchers in machine vision, pattern
recognition, speech understanding, robotics, and other areas of artificial intelligence
can profit from understanding features of existing nervous systems. Thus, a new field
is emerging: the study of how computations can be carried out in extensive networks of
heavily interconnected processing elements, whether networks are carbon - or silicon-
based.”53

One of the key motivations behind the idea of Neuromorphic Engineering is to emulate the
most efficient and interesting brain processes to electronics. It is highly desirable to copy the brain
as it has gone through thousands of years of natural selection, it is thus likely that it would do
a lot of things better than what we’d manage to engineer while overlooking it. Vision is one of
the most obvious and most accessible process to emulate: the retina has been extensively studied
and presents a rich myriad of layered elements that were understood to be reproducible with
electronics. As mentionned in chapter 1, Misha Mahowald - in Carver Mead’s lab - first brought
the idea and successfully developped it. This section aims at understanding the subelements that
constitute vision. We’ll first look at biological vision through a brief overview of the brain and the
retina. We will then proceed to study how light works and can be processed with our favourite
material: silicon. Finally, we’ll look at some very basic circuits that constitute building blocks of
neuromorphic vision.

10.2 Light

Before getting into the specifics functioning of photosensors or the human vision, one should spend
some time reviewing basic things about light itself.

Light consists of electromagnetic radiation with a dual particle-wave nature. This was pointed
out by Einstein in 1905 who theorized that light is composed of discrete quanta called photons
with an energy that is inversely proportional to the wavelength of the light, so that E = hc/λ.
For example a photon that will be seen by our eyes as yellow has a wavelength λ = 555nm has
E = 2.1eV in vacuum.

53From Carver Mead’s Textbook - Foreword. 1989.
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Figure 98: Range of photon wavelength. Adapted from somewhere on Google Image.

10.2.1

The photon
Photon is a basic unit of all forms of electromagnetic radiation including light. It has no mass,

no electric charge, does not decay spontaneously in vacuum. In vacuum, it moves at speed of light
c. We can compute the energy E and momentum P of photons:

E =
hc

λ
= hν (207)

with frequency of light ν = c/λ in Hz.

p = |P | = h

λ
(208)

Its energy E and momentum P are related by E = cp. (p is magnitude of P). h is Planck’s
constant.

10.2.2 Measuring light: Radiometry and photometry

Units of light Measuring light is not done through photon energy, as it is not an informative
measure of ”illumination” or ”brightness”. Though these two are of course related to energy! The
unit of visible light is the Lumen (noted lm). Several measures are derivatives of this unit and
are more useful for everyday use. The Lux (noted lux) is the measure of visible light on plane
surface - it is measured in lm/m2. The Candela (noted cd) is also similar to the lux but more
appropriate to angular measurements: it is measured in lm/steradian 54. We typically use it
to measure the illumination from light sources (e.g. lamp) as light propagates uniformly in all
directions. Fun fact: prior to 2018, the basic unit of light was the Candela, but the 26h General
conference on Weights and Measures redefined photon metric units. The new definition which
took place on May 20th 2019, the Lumen is defined by taking the fixed numerical value of the
luminous efficacy of monochromatic radiation of frequency 540 × 1012 Hz, Kcd, to be 683 when
expressed in the unit lm W−1. Understanding the units of light is not straightforward and out of
the scope of these lecture notes so let’s move on. 1 Lux of sunlight (because it will be different if
you have a different light source as the distribution of wavelenghts emitted might be different) is
≈ 4 · 10−3W/m2 ≈ 104 photons/µm2/s.

Scene illumination and reflectance The typical illumination humans are exposed varies quite
a lot: it’s about 100 klux in full sunlight and 0.1 lux in moonlight. Light is reflected through
surface, at different levels. Opaque materials typically absorb most of the light while the rest
reflects most to all of light it receives. The average scene reflectance is about R ≈ 18%.

What do radiometry and photometry mean? Radiometry is the science of measurement
of optical radiation at any wavelength, based simply on physical measurements. Radiant energy
cannot be measured quantitatively directly, but must always be converted into some other form
such as thermal, electrical, or chemical. Photometry is the science of measuring visible light in

54The steradian or square radian is the SI unit of solid angle. It is used in three-dimensional geometry, and is
analogous to the radian, which quantifies planar angles. A sphere has 4π steradian.
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units that are weighted according to the sensitivity of the human eye. It is a quantitative science
based on a statistical model of the human visual response to light - that is, our perception of light
- under carefully controlled conditions.

10.3 Physics of Photosensors

The physical possibility of converting light into electrical charge is at the core of so many key
processes in today’s world - including biological vision itself. Before we dig into the very concepts
of human vision and artificial (silicon) photosensors, it’s useful to look in some detail at the basic
physical phenomenon that enable such processes. Let’s have a look at these:

10.3.1 Photoelectric Effect

The photoelectric effect 55 is the fundamental physical phenomenon underlying pretty much ev-
erything we can do with light: from vision and cameras to the photo-voltaic energy generation.
Briefly, it is the emission of electrons when electromagnetic radiation, such as light, hits a material.
Electrons emitted in this manner are called photoelectrons and are very useful to say the least.

Figure 99: A) Basic principle of Photoelectric effect. Incident photons represented with the zigzag
blue arrows and emittied photoelectrons with the black straight arrows. (Adapted from somewhere
on Google Image). B) Photoelectric effect with Band Energy Diagrams applied to Semiconductors.
We can see that energy needed for photoelectron emission is higher for intrinsic semiconductor
than extrinsic semiconductor. ED and EA are Fermi level of N-Type and P-Type semiconductors,
respectively. (Adapted from Lecture Notes).

Figure 99.A) shows the basic intuition behind the photoelectric effect. Incident photons provide
some energy that will be enough to take electrons in Valence band out of the valence band and
into the conduction band, thus becoming ”free” to move! This is best shown in Figure 99.B). As
we established before, the energy of a photon (in vacuum) can be calculated from its wavelength
Ephoton = hν.

We can think of the incident light as a stream of photons with a given energy determined by
the light frequency. When a photon hits a metal surface, the photon’s energy can be absorbed
by an electron in the metal. This is the same energy principle that we discussed in Chapter 2
when talking about conduction and valence shells, where some energy needed to be brought to
free electrons. And exactly as we discussed in chapter 2, there is a minimum energy (so minimum
frequency

10.3.3 Optical Absorption

Now that we established the basic principes behind photoelectron emission, which comes from
absorbtion of photon energy, we should look at some parameters that influence the absorption of
photons within a certain material.

55Most of this explanation is based on the exellent presentation of the topic on Khan Academy: https://www.

khanacademy.org/science/physics/quantum-physics/photons/a/photoelectric-effect.
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When photons are incident onto a surface, they have a certain probability of generating an
electron-hole pair, in any ”slice” of Silicon. A slice is simply a layer of silicon atoms, that we
can also define as an increment depth quantity δx. As a consequence of this non 0 probability of
generating an electron hole pair, the number of photons decreases exponentially within the depth
of the surface - the more you go inside the less photos you find because a lot of them have already
been absorbed. Every slice δx removes some fraction. (See figure 100.A). This actually varies
a lot with wavelength (and thus energy). The longer the wavelength, the lower the energy and
the further photons can penetrate before electrons hole pairs are made. This may seem counter-
intuitive but it makes sense: it’s less likely that low energy (high wavelength) photons create
electron hole pairs than higher energy ones - so photons manage to go further inside. This is
illustrated in Figure 100.B).

Figure 100: A) Schematic of varying photon flux as a function of depth. Top image shows the
principle of ”Slice” and bottom shows the exponential decay of photons as a function of material
depth. B) Absorption as function of wavelength in different material, with Silicon highlighted in
red. We can clearly see that optical absorption decreases with increasing wavelength (and thus
lower energy). Adapted from Lecture Notes.

Here are the maths underlying the concept. We define photon flux as a function depth x as
ϕ(x). The number of photons absorbed within δx is given by the absorption coefficient alpha:

dϕ(x)

dx
= −αϕ(x) (209)

This differential equation can easily be solved:

ϕ(x) = ϕ0(x)e
−αx (210)

The ϕ0 propety is important and factor of a few things, such as Reflection R, cross section A
and incident optical power Popt. I mention these only for reference, knowing this is not required
for the exam - though this should intuitively make sense.

ϕ0 =
1−R

A
· λ
hc

· Popt (211)

In silicon, the longest wave length that can create photoelectrons is 1.1 µm - just above visible
domain. Huh, once again, we’re in luck, Silicon happens to have just what we need.

10.3.4 Quantum Efficiency

One last thing to talk about before we start looking at the details of some actual sensors: quantum
efficiency. Quantum efficiency, η (or QE) is defined as the number of electron-hole pairs generated
for each incident photon (always <= 1 !!). This is particularly important to evaluate the quality
of photosensors, and also is a very important measure for solar energy things. Of course you want
a high number of electrons (and thus current) to be emitted from light. This is really what needs
to be optimized in a photosensor. This concept should become clearer when talking about specific
photosensors, so hold it if it’s not clear yet.

127



η =
Iph
q

· hc/λ
Popt

(212)

With Iph photogenerated current, q number of carriers (electron or holes) and Popt incident
optical power.

Figure 101: Quantum efficiencies and responsivities of photosensors fabricated from different
semiconductors. Silicon exhibits a very good quantum efficiency peaking in the near infrared
which may approach 100% in a certain spectral range. Adapted from Textbook.

10.4 Interlude: Human Vision and the Retina

Before jumping into silicon photoreceptors, let’s have have a very brief look at human vision.
We’ll mostly focus on understanding our ”photoreceptor” which is the retina and won’t go into
the processsing details of the visual cortex which, despite having been extensively documented
since the work of Hubel and Wiesel in the 1960s 56 is still an active domain of research due to its
complexity.

10.4.1 General architecture of the visual system

Some thing you should know about the architecture of the visual system:

• Retinal image is inverted and reversed compared to the visual field

• The axons of retinal ganglion cells form the optic nerves.

• At the optic chiasm, axons from the temporal halves of each retina continue into the optic
tract of the same side. Axons from the nasal halves cross to the optic tracts on the opposite
side. So the myth that vision is systematically processed on the opposite side of
the corresponding eye if false. But the visual field is separated in two on each eye.

56Hubel and Wiesel worked together at Harvard on visual processing in the cat. Their research, spanning over
two or three decades, and for which they both received a Nobel Prize, remains some of the most influential works
in Neuroscience to date.
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• Most of the primary visual cortex (also called V1) is on the medial surface of the human
brain (see figure). This is one of the key place where visual input is processed in the brain.

Figure 102: Simplified structure of the Visual system. Adapted from somewhere on Google Image.

10.4.2 The human eye

Not much to say besides what’s shown on figure 103, this is just about organizational things. The
important bit it where the retina is, where interesting things happen.

Figure 103: Simplified structure of the eye. Adapted from somewhere on Google Image.
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10.4.3 The retina

The retina is where the photoreceptors are located. The important processing happens first
through the cones and rods - the eye’s photoreceptors, followed by the bipolar cells and then
ganglion cells, which sends the signal to the brain. This may be a bit counterintuitive when first
looking at figure 104: light arrives first in the photoreceptors, which are at the back of the
retina. The photoreceptors will then transmit to the ganglion cells through the bipolar cells.
Finally, the ganglion cells carry information from the retina to the brain. If you pay attention to
the ”wiring” in the figure, this should become clearer.

Figure 104: Simplified structure of cells in the Retina. Light reaches first the photoreceptors
(cones and rods), and transmit, through bipolar cells, to the ganglion cells which then transmit
to the brain. Adapted from somewhere on Google Image.

10.4.4 Human photoreceptors: Rods and Cones

The most interesting part for NE1 is understanding the photoreceptors, their structure and or-
ganisation. There are two main types of photoreceptors in the retina: Rods and Cones. They are
very particular types of neurons. Rods (≈ 120 Millions) are very sensitive and are most useful
in diminished light. They ”saturate” at high illumination. Cones on the other end are much less
numerous (≈ 5 Millions) and are only sensitive to brighter light. There are also three different
types of cones, each being specifically receptive to a range of wavelenght (colors). A summary of
the distribution and optimal wavelenght for each type of photoreceptor is shown in figure 105.
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Figure 105: A) Distribution of Cones and Rods in the retina. B) Wavelenght absorbance of
different types of photoreceptors of the retina. Adapted from somewhere on Google Image.

We should also note that there are no rods but many cones in the fovea: it is the region in our
retina that provides the highest acuity of vision (see Cones peak region in figure 105). There are
also no photoreceptors on the optic nerve (see figure 103) which constitutes a blind spot.

10.4.5 Photo receptor structure and function

Figure 106: Structure of Rods and Cones. Adapted from somewhere on Google Image.

As can be seen in figure 106, rods and cones both possess ”outer segment disks” which are filled
with opsin, a protein which absorbs photons as well as voltage gated Sodium (Na) channels. These
proteins are actually slightly different in cones and rods: cones carry photopsin whilst rods carry
rhodopsin. However, both actually function very similarly: photons being in contact with the
opsin proteins are absorbed by the latter: this is due to the photoelectric effect!. This generates a
biochemical cascade (including a decrease in Glutamate release) leading to a hyperpolarization of
the photoreceptor cell and eventually to triggering an action potential. Bipolar cells subsequently
respond to this hyperpolarization and things go on from there to the ganglion cells etc... Figure
107 shows the change in current after light trigger (at time 0) through the photoreceptors.
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Figure 107: Cones and Rods response to light. Adapted from somewhere on Google Image.

Let’s give a summary of the key points about photoreceptors, because this is what should be
remembered:

• Photoreceptor cells are depolarized in the dark

• Light hyperpolarizes the cell, with activates the next cell in the neural pathway: bipolar
cells. This is through the photoelectric effect.

• In the dark, levels of Glutamate are high and allow a steady inward dark current. This keeps
the cell at a depolarization value of about -40 mV.

10.5 Silicon Photosensors

10.5.1 Common principles of Photosensors

The growth in the market for optical communication and electronic imaging has brought a huge
importance to the photosensor as optoelectronic interfaces. Consequently, a wide range of photo-
sensors designed for different applications are available. Here, we will consider only photosensors
that can be fabricated with semiconductor processes used for the implementation of transistor-
based electronic devices. Artificial Photosensors work just like the biological ones we’ve seen in
the retina: they convert electromagnetic radiation (photons) into a different physical form using
photoelectric effect.

In a semiconductor, an incident photon and therefore its energy can be absorbed by an electron;
a process known as the inner photo-electric effect. A photon with an energy larger than or
approximately equal to the bandgap energy can excite an electron from the valence band into the
conduction band. In the energy-band diagram, this process corresponds to the generation of an
electron-hole pair 57 . Illumination of a semiconductor therefore increases the concentration of
mobile charge carriers above the thermal equilibrium value in the exposed area. If the motion
of the carriers is driven by diffusion only, then the generation is balanced by recombination.
However, in the presence of an electric field, which typically leads to drift current, electrons
and holes can separate and some of the separated carriers contribute to an electrical output
signal. This phenomenon is called photoconduction. The simplest device that implements the
phenomenon is the photoconductor, which is a slab of semiconductor in an externally applied
electric field. Photoconductors exhibit a large dark current, which is a background current

57The notation of ”pair” might be a little confusing. It means that the electron now has enough energy to move
around freely and when it does a hole remains in the shell. We know have a pair of a free electron and its hole.

132



which is still present in the absence of optical stimulation. This current is due to the relatively
large doping concentration used in most modern semiconductor processes. This doping results in
high conductivity values and a poor signal-to-noise ratio of photoconductors. There are also other
types of photoreceptors such as the photogate or the phototransistor but we’re not looking at these
in NE1. Let’s just have a look at the photoconductor though before getting to the important part
of the photodiode.

10.5.2 Photoconductor

This is not something we focus on in NE1, but it’s the simplest form of photoreceptor. Let’s
briefly have a look.

Figure 108: Photoconductor inside a circuit. Adapted from somewhere on Google Image.

It’s simply a piece of semi conductor that receives light and conducts current as a consequence.
The conduction rate will be proportional to multiple things, including the cross sectional area of
the piece of semi conductor, it’s depth, the quantum efficiency, the incident optical power, and
of course the wavelength and energy of incident light. Charge is then transported through the
externally applied electric field (drift current).

10.5.3 Photodiode

The photodiode 58is the most important photosensor studied in NE1. This is the one we should
know about the most.

A diode is a much more suitable photosensor, because it has a depletion region with a low
conductivity and a built-in electric field. The presence of a depletion region substantially reduces
the dark current, while the built-in electric field in the depletion region performs charge separation
even in the absence of an externally applied voltage. This generates, as seen in figure 109 a reverse
current (this is not the same reverse bias which refers to voltage you apply at the nodes). We say
that the current is reverse because electrons flow from p-region to n-region (and hence current
from n-region to p-region), which is the opposite of normal current and electron flow direction.

58I highly recommend watching Khan Academy’s explanation on the topic, which does a brilliant job at explaining
the reverse bias aspect of generated photocurrent. https://www.youtube.com/watch?v=KgKcbW77txY
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Figure 109: Principle of operation of a photodiode. Electron-hole pairs generated by incident pho-
tons in or within a diffusion length outside the depletion region become separated and contribute
to a reverse generation current. Adapted from textbook.

Why do we typically operate photodiodes in reverse bias? Remember from chapter 2
that the depletion region is much larger when operated in reverse bias compared to forward bias,
and the leakage current is also significantly smaller. When operating photodiodes, we want to
have something very sensitive to incident light, so we want the largest possible surface area (in
this case the depletion region) to receive incident light, and the resulting photocurrent not to be
drowned into already existing current. This is why operating it in reverse bias makes sense.
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Figure 110: Steady-state current-voltage characteristics of a photodiode. The upper curve is the
normal diode characteristic (dark characteristic). The lower curve shows the characteristic under
illumination. Photodiodes are usually operated either in quadrant III as photosensors, or in the
quadrant IV as solar cells. Remember from chapter 2 that reverse bias is quadrant II and III (-V),
and forward bias is I and IV (+ V). Forward current is I and II and reverse current is III and IV.
Adapted from textbook.

A photodiode has two principal modes of operation, depending on its application. If the
photodiode is used to convert optical power into electrical power it is called a solar cell and
operated in the photovoltaic mode. In this mode, a load is connected between the two terminals,
such that a reverse current flows through the diode in the presence of a forward voltage. A solar
cell is thus operated in the quadrant IV of the current-voltage characteristic. The generated power
is given by the product of the reverse current and the forward voltage. Commercial solar cells are
complicated devices, which are optimized with respect to optical-to-electrical power-conversion
efficiency that is typically between 10% and 20%59.

In the other mode of operation, the photosensing mode, the photodiode is used to estimate
the photon flux. In steady state, the diode is typically either open-circuited and the forward
voltage is read out or a reverse (or zero) bias is applied to the diode and the reverse current is
read out. In the latter case, the photodiode is operated in the quadrant III of the current-voltage
characteristic. Here, the photodiode is quite a good current source, because the photocurrent is
almost independent of the applied reverse bias.

The important thing to remember in terms of dynamics (because no need to get into the
maths) is that we obtain by operating a photodiode in such a way a current that is linearly
proportional to light intensity.

Considerations about photodiodes Photodiodes designed to be operated in the continuous-
current photosensing mode are usually optimized with respect to their quantum efficiency and
their response time, which are two partly conflicting requirements. The quantum efficiency can
be optimized by applying an anti-reflection coating to the semiconductor surface to reduce R and
by generating a thick depletion region close to the surface. The response time can be kept small
by minimizing the junction capacitance, the carrier transit time through the depletion region, and
the carrier diffusion time to the depletion region. A small junction capacitance requires a thick
depletion region, while a short transit time favors a thin depletion region and a large drift velocity.
Diffusion times to the depletion region can be minimized if the depletion region extends close to
the surface. It is thus advantageous to operate a photodiode at a large reverse bias in order to
increase the depletion region width and the drift velocity. The depletion region width can also be

59High-efficiency solar cells are built with a layering of different semiconductors of different bandgap
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increased by having a low impurity-doping concentration in the junction region, as is done in most
commercially-available photodiodes. Such photodiodes are known as p-i-n photodiodes, because
they have a (nearly) intrinsic region between the n-type and p-type region. In the photodiode
operation range described so far, the quantum efficiency is smaller than unity: Each photon
cannot produce more than one electron-hole pair. However, if a diode is operated in the avalanche
multiplication regime in the vicinity of reverse junction breakdown, the photogenerated carriers
multiply in the depletion region due to impact ionization and the quantum efficiency can be
significantly larger than unity. Avalanche photodiodes are photodiodes designed to be operated
in this domain. They have small response times and better signal-to-noise ratios than normal
photodiodes. A normal semiconductor process provides very poor avalanche photodiodes with
instability and matching problems. A photosensor with an internal gain mechanism that may
be implemented more efficiently with standard processes is the phototransistor, described in the
following section.

10.6 Operations of Photoreceptors

10.6.1 Dark Current

Photodiodes leak even in darkness. Here are some key points to know about Dark Current:

• Typical process leaks about 1 nA/cm2 at 25 degrees Celsius.

• This actually corresponds to moonlight scene illumnination. So that means it’s difficult to
differentiate between moonlight and complete darkness!

• Most of the leakage comes from the edges of the junctions, where leakage is 10-100x higher.
This makes sense considering the absorption principle discussed previously.

• Leakage current doubles every 6 to 8 degrees. Don’t use it at night in summer!

10.6.2 How to estimate incident light on the chip

So this is to reach estimates of current from given light intensity. Here are some considerations
before reaching the final equation:

• 1 Lux ≈ 104photons/µm2/s

• Moonlight 0.1 Lux; Office light 500 lux; Full sun 105 lux.

• Average scene reflectance ≈ 18%

• You operate it using a lens (with focal length f). This allows you to concentrate the incident
photons into the smaller area your photodiode is located in.

• Lux falling on chip is 1
4f2 imaged from white surface. Typical fast lenses 60 used with have

f = 1.4.

• Quantum efficiency of photodiodes is about 0.5.

We can now establish an equation that works for estimating amount of light (in Lux) falling
on the chip Ichip (in Lux) as a function of scene illumination Iscence[Lux] (in Lux):

Ichip[Lux] =
Iscence[Lux] ·R ·QE

4f2
(213)

This typically yields that it’s only a small fraction of scene illumination ( 1/30th) that alls on
the chip.

60https://en.wikipedia.org/wiki/Lensspeed
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10.6.3 Why is a log response desirable?

During the lab, we studied photoreceptor with logarithmic response to light intensity. A logarith-
mic response has the following advantage:

• Static scene illuminance I appears as additive term in the output, formed from the product
of I and scene reflectance R : log(RI) = log(R) + log(I)

• Differences between photoreceptors over space or time leave only the reflectance variations:
∆log(IR) = ∆log(R)

• Reflectance variations are object properties, which are useful for vision.

• The log is also very compressive, allowing wide dynamic range within a power supply rail -
as long as mismatch can be tolerated.

10.7 Logarithmic Photoreceptor

There exists several types of logarithmic photoreceptor circuits that exhibit different properties,
these are shown in figure 111.

Figure 111: Photosensors with logarithmic irradiance-to-voltage conversion for subthreshold pho-
tocurrents, consisting of a photodiode and a current-to-voltage conversion stage implemented as
(a) a diodeconnected MOSFET, (b) two diode-connected MOSFETs in series, (c) a MOSFET in
sourcefollower configuration. Adapted from Textbook.

I include the transfer functions for these circuits here without derivation. This is typically the
kind of things that I believe they may ask us to derive in the exam, though I leave it as an exercise
for the reader :).

Diode Connected : Vout = Vdd −
UT
κ

log(
Iph
I0

) (214)

Double Diode Connected : Vout = Vdd − UT
κ+ 1

κ2
log(

Iph
I0

) (215)

Source Follower : Vout = κVg − UT log(
Iph
I0

) (216)

UNCLEAR: Iph is the ”static scene illuminance” (in Lux).

10.8 Reasoning through Source Follower Logarithmic Photoreceptor

Now let’s look in details at the circuit that we have studied in class and that we most likely will
be asked about: the source follower photoreceptor
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Figure 112: Source Follower Circuit with parasitic capacitance considered. Idark is the constant
dark current, Ibg the static scene luminance i signal luminance (varying part). Resulting current

I = Idark + Ibg + i = I0e
κVb−V1
UT . Adapted from Lecture notes.

The difference between the circuit shown in figure 112 and figure 111.C is the capacitor. In
reality, the capacitance is also present in figure 112.C (A and B as well for the matter) but it is
omitted from the schematic. The capacitance that you see is the ”parasitic capacitance” which
we have already encoutered before. It is indeed present in all electrical components and need
sometimes be considered. This is the case here as we need to consider the speed at which response
is obtained, which is an obviously important criteria for photosensors.

Let’s first analyze the source follower circuit. Tobi’s explanation on the topic is extremely
clear, so I’ll just copy (almost) word to word what he said in the lecture. It’s best to proceed step
by step, so let’s do it like this:

1. When light shines on the photodiode you see, a current is generated. This current is linearly
proportional to the incident light.

2. If there is no light, you have some dark current.

3. When light shines, because of conventional current source, the photodiode acts as a constant
current sink.

4. When light shines, the photodiode sinks currents, and in way, forces the current to sink.
That means that the top transistor is forced to adapt itself to match the current from the
photodiode. As we assume that the gate voltage is unchanged, the source voltage of our top
transistor (V1/Vp) must change to match the photodiode. The more light shines, the higher
the current, and hence the lower V1/Vp need to be (to reach a higher Vgs. We can thus write
the following equations, by taking I as the current flowing through the photodiode, equal to
the dark current + the photocurrent:

I0e
κVb−V1
UT = I (217)

5. Since the current flowing in in the transistor is exponential to the Vgs, then it follows the
the source voltage changes in logarithmic fashion with the changing current.This yields@

V1 = κVb − UT ln(
I

I0
) (218)

We can also derive from this the graph which is seen in 112, the slope of the linear part is
UT

6. Every photodiode has an associated parasitic capacitance associated to it - this also happens
to low pass filter the signal here (because there is a conductance at the node and then the
capacitace, so it’s an RC configuration).
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7. There is thus a time constant associated with the node, which is related to the capacitance
and the conductance of the node. The conductance of the node is ”how much does the
current in the node change when changing the voltage”.

8. To evaluate the conductance, let’s remember that the photodiode behaves like a constant
current sink (assuming constant light), so this current does not change with the voltage (Vp).
However, the current in the transistor is heavily (exponentially) controlled by the voltage
(Vp).

9. The source conductance is therefore simply the ”source conductance” of the subthreshold
transistor, which we’ve derived before. This is gs = I/UT .

10. We thus now have the time constant of our circuit: τ = RC = C/G = C·UT
I .

11. The time constant is inversely proportional to the photocurrent. In other words, the
brighter the light, the faster the circuit behaves. This is a problem because it means
our circuit will not behave properly in low light conditions. To deal with this problem, we
typically go for a more practical transimpedance log photoreceptor.

10.8.1 Time domain response of source follower response

1. The current flowing through the capacitor must be the current sinked by the photodiode
minus the current flowing through the transistor. Let’s omit UT for simplicity.

Cv̇1
61 = e

κVb−V1
UT − I (219)

2. Small signal analysis yields:
Cv̇1 = −gsv1 − i (220)

3. Knowing that τ = c/gs, we have the transfer function:

(τs+ 1)v1 = − i

gs
(221)

If we compute the magnitude of the transfer function:

| v1
i/gs

| = | 1

τs+ 1
| (222)

This is the transfer function of a lowpass filter! Note that the input is current and we
obtain volts, which is why we speak of transconductance gs.

10.9 Reasoning through Transimpedance Logarithmic Photoreceptor

This is common exam question!

61Dot means derivative - here with respect to time
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Figure 113: A) Basic Transimpedance Logarithmic Photoreceptor diagram. We only need this
for DC response. B) Transimpedance Logarithmic Photoreceptor which considers the parasitic
capacitance and conductance, which need to be considered for the time frequency response. We
will be using naming conventions of B) in our analysis. Adapted from Lecture notes.

1. Circuit follows the same logic, except that instead of M1 having a fixed gate voltage as in
the source follower, we have some kind of inverting amplifier setting that controls it.

2. Photodiode still acts as a constant current sink as in the previous source follower arrange-
ment.

3. M3 is a saturated pFET which draws a constant current Ib.

4. Similarly to before, V1, gate voltage of M2, must be at a value that matches the current Ib
flowing in the right branch. It follows that V1 must match Vb. That is, Vdd − Vb = V1 − 0.

5. V2, gate voltage of M1 must provide a Vgs to M1 that will match Ibg + i. Note that Vgs of
Mb is V2 − V1

6. Important: A popular exam question to take some values for a starting voltage point and
reason you way through the rest. This is particularly true where we can reason through the
DC output of this circuit:

(a) Let’s for example assume that V1 = 0.7V

(b) We thus from 1. need to have Vdd − Vb = 0.7V .

(c) Let’s assume that we have a saturated transistor instead of a photodiode. This allows
us to have a voltage to reason with rather than current, though both effectively do the
same thing: provide constant current from constant input. This is just for the sake of
the analysis because we can now choose a gate voltage for this transistor M0 that we
call Vg0.

(d) If we take gate voltage of this transistor to be Vg0 = 0.4V , then it follows from 2. that
V2 − V1 = 0.4v.

(e) We thus have value of V2 = 1.1V !

7. The DC response of this circuit is:

V2 = k−1(V1 + Utlog(
Iph

I0
) (223)
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Note that this doesn’t consider the parasitic capacitance and conductance as we’re doing
the DC output.

8. Summary: This circuit is an improvement of the previous one, where we enhance the
response speed by adding a high-gain negative feedback lop from the source to the gate of
the MOSFET in the previous source follower configuration. The voltage output signal then
appears at the gate of the MOSFET, while the source and therefore the voltage across the
photodiode is practically clamped.

10.9.1 Time domain response of transimpedance logarithmic Photoreceptor

1. From the circuit we can get the following differential equations for V1 and V2:

C1V̇1 = I0e
κV2−V1
UT − Iph (224)

C2V̇2 = Ib − go2V2 − I0e
κV1
UT (225)

2. In the small signal regime, we can simplify this to:

C1v̇1 = gm1v2 − gs1v1 − i (226)

C2v̇2 = −go2v2 − gm2v1 (227)

with gs1 =
−Iph
UT

, gm1 =
κIph
UT

, go2 = Ib
Ve
, gm2 = κIb

UT

Note that we also neglected Ib here, as it is constant and we are interested in the small
changes only.

3. By defining the time constants τ1 = C1

gs1
and τ2 = C2

go2
and remembering how to use Laplace

transform to solve linear differential equations (just replace the derivative with multiplication
by s), we can rewrite this to:

(τ1s+ 1)v1 =
gm1

gs1
v2 −

i

gs1
(228)

(τ2s+ 1)v2 = −gm2

go2
v1 = −Av1 (229)

where A is the gain of the output transistor by definition.

4. Solving this system of polynomial equations, we get:

v2 =
− A
gs1

τ1τ2s2 + (τ1 + τ2)s+ 1 + kA
(230)

10.10 Laboratory : Photoreceptors

In this lab we will compare the source-follower (SF) photoreceptor with the unity-gain active
transimpendance feedback (TI) photoreceptor.

10.10.1 Static DC responses

First, we study the response of these two circuits to a static input photocurrent. These two
circuits have symmetrical responses at the output voltage. To put it simply, with less light the
SF photoreceptor outputs a bigger voltage and viceversa for the TI photoreceptor.
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Figure 114: DC Photoreceptors responses

10.10.2 Large signal transient response

Next, we compute the large signal transient response. Similarly to the lab on linear systems, we
need to compute the ordinary differential equation for both photo receptors.

Less photocurrent translates to more output voltage in the SF photoreceptor. In the time
domain with a large input step, SF response is almost symmetrical to the current, whereas TI
response behaves similar to a Follower Integrator.

Figure 115: Large signal transient photoreceptors responses

10.10.3 Small signal transient response

Frequency response TI photoreceptor is quicker in response to changes in photocurrent than
the SF photoreceptor (and also noisier).

In the simulation, we found a SF cutoff frequency of 289.31mHz and a TI cutoff frequency of
74.35Hz .

142



Figure 116: Bode plots of the photoreceptors

To explain this numbers, we referred to the feedback of the TI photoreceptor, which increases
tau and decreases the frequency. Since there are no peaks in the frequency response of the bode
plot, the TI circuit moves slowly toward equilibrium (overdamped) at this Ib and Ipd .

Root locus plot The pole of the SF photoreceptor is defined as the frequency for which the
value of the denominator of its transfer function becomes zero (as I like to say the poles define
the undefined).

The SF photoreceptor has a single pole and it moves farther away from the origin, as the
photocurrent increases.

On the other hand, the TI photoreceptor has two poles, because of the quadratic demoninator
D(s) of H(s). To study them and plot their locations on a complex plane, we need what are called
root locus plots.

Root locus plots is a graphical analysis method used in control theory and stability theory.
They examine how the roots of a system change with variation of a certain system parameter (in
our case we will increase the amplfier bias current Ib).

The quality factor Q exists these poles.
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Figure 117: Poles of the transimpedance photoreceptor

In the exactly critically-damped condition, the quality factor Q equals 0.5 . This means that
at around Q = 0.5, the voltage output of the TI photoreceptor returns as quickly as possible to
its equilibrium position without oscillating back and forth.

Experiment From the conditions we defined above, we can experiment the small signal transient
input photocurrent.

We define a small signal transient input photocurrent with the following step size.

Figure 118: Small signal transient input photocurrent for TI photoreceptor

With a quality factor of about 1/2, the TI photoreceptor biais current smooth the small signal
transient input photocurrent. Doubling Q, let the curve approach more closely the input.
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Figure 119: Small signal transient input photocurrent for TI photoreceptor, Q 0.5

We found the theoretical maximum Q at 8.95, using a bias current of around 4e-10A. However
in such circumstances, the photoreceptor output has a ringing behavior. Apparently the the poles
of the transfer function are not purely real.

Figure 120: Small signal transient input photocurrent for TI photoreceptor, Q max

10.11 Adaptive photoreceptor

Since biological photoreceptors are adaptive and amplifiy changes more than static inputs, a
silicon photoreceptor that mimics this by providing a low gain for DC but a high gain for AC is
the adaptive photoreceptor circuit given in 121.
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Figure 121: Adaptive photoreceptor, as shown in the lecture slides.
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Figure 122: Adaptive photoreceptor in detail.

10.12 Cascode and Miller Effect

10.13 Test Yourself

This chapter being quite dense, you should expect general knowledge questions about the content.
Here is a list of things you should know about this chapter for the exam:

• What is the energy of a photon of a given wavelength?

• How does photo-transduction occur in silicon, i.e. how are electrons generated and how are
they collected in a PN junction?

• What is Quantum Efficiency (QE)?

• How does the I-V curve of a diode change in the presence of light?

• How does absorption length of photons change with wavelength over the visible and near
infrared range?
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• How can you build a simple logarithmic photoreceptor?

• How you can use adaptation in a feedback loop to cancel out circuit mismatch.

• How you can build a fast logarithmic current-sense amplifier, by using feedback to make a
virtual ground.

• How you can use a capacitive divider in the feedback loop of an amplifier to set a gain.

• How you can use a cascode configuration to increase effective drain resistance.

• What is the Miller effect?

• How can a cascode can be used to reduce it?
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11 Complementary Notes and Topics

11.1 Revision Table

11.2 Know your constants - Tobi will ask you

Tobi will ask you to give constants. Yes I know, why would you bother remembering this in the
age of internet? Well, general knowledge and showing off in dinner conversation is one reason.
Truth is, it’s important because it gives you an idea of the scale of things. Knowing the units is
also very important, arguably more important than the numbers - helps you properly understand
the purpose of the given constant.

Here are the constants you should know:

• Kappa

• Charge of an Electron: e = −1.6 · 10−19Coulomb

• Boltzmann Constant: k =1.38 · 10−23J/K

• Thermal voltage: UT = kT
q = 25mV at room temperature (T approx 300 Kelvin)

• Bandgap of Silicon: 1.12 eV

• Planck’s Constant h = 6.64 · 10−34J.s

• Speed of light in vacuum: c = 3 · 108m.s−1

• Highest photon wavelength that can generate an electron-hole pair in Silicon λmax = 1.1µm

• 1 Lux ≈ 104photons/µm2/s

• Illumination at moonlight: 0.1 lux. Illumination with full sun: 100.000 lux

11.3 Exam Tips

11.3.1 General comments on the exam format and expected level of details

• We believe that we may be asked a series of related questions rather than unrelated ques-
tions of different chapters. For example, we could first be asked basic Saturation vs Ohmic
transistor operation information, followed by two basic circuit such as the diff pair and the
current mirror - which are the building blocks of the transconductance amplifier. We’d then
of course be asked the transconductance amplifier. This logic can be applied to several
different topics covered in this course.

• We think that general knowledge questions would also be asked. That is history of Neuromor-
phic Engineering, of transistors, Neuroscience topics, and physical constants or important
quantities discussed in the course (UT , κ, I0 etc...)

11.3.2 Questions that they we think will be asked

• How do you measure κ if you don’t have access to the physics of the devices?
You could use a NFET source follower, which transfer function includes Kappa, two voltages
which one can control (from current source and the input transistor voltage) and one output
voltage that you can measure.

• You could be given a basic circuit with example voltages and ask to derive the voltage/cur-
rent of a given element, or simply say if everything makes sense or if we’re violating some
assumption like saturation.
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11.3.3 How to practice your circuits

• Draw your circuits, and state all assumptions.

• Draw your circuits in opposite configuration (e.g. N and P type current mirror)

• Reason your way through circuits, with voltages/current starting point and everything that
follows from this. This was done on the photodiode chapter. Everytime you can take
assumptions such as κnandκp = 1, I0n = I0p, all transistors have the same W/L, neglect
the Early Effect (except if important such as in small signal difference WTA for example).
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12 Appendix
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Neuromorphic Engineering I Study Guide 1

Neuromorphic Engineering I Study Guide

August 30, 2021

This is the collection of ”What we expect you to know” sections from the individual labs. If
you can tell someone else with confidence about these topics, you will do well at the exam. We
recommend that you try to study with another student. Take turns explaining to each other
about these topics, and drawing schematics and diagrams for each other.

1 Semiconductors

What is neuromorphic aVLSI all about? Who came up with it? Where is it being done?

Semiconductors, bands, band gap of silicon, the Fermi-Dirac distribution, doners and acceptors,
PN junction, reverse and forward characteristics.

Using the Keithley voltage source (K230) and source-measure electrometer (K236) instruments.
E.g. what is the K236 DC input impedance when measuring voltage with it? Basic knowledge
of matlab. How to use the pot-boxes.

2 Subthresold FET operation

What does it mean for a MOS transistor channel to be accumulated, flat-band, depleted, in-
verted? Knowledge of how subthreshold transistor operation is a diffusion process and why it
depends exponentially on the terminal voltages. What is the meaning of ”saturation”? What is
the triode or linear operating range? Ids vs Vgs on log scale. Differences between n- and p-fets.
Typical values of I0, κ and subthreshold operating range. What are wells and how should the
wells be biased relative to the substrate? What is the ”back gate” or ”body effect”? How is
the back gate is related to κ? How to make a MOS capacitor and what is its C-V relationship.
How a source follower works and how to compute the gain of a source follower.

3 Above-threshold FET operation

How transistors work above threshold. What is the linear or triode region and what is the
saturation region? How do they depend on gate and threshold voltage. How the Early effect
comes about. Typical values for Early voltage. How to sketch graphs of transistor current
vs. gate voltage and drain-source voltage. How above-threshold transistors go into saturation
and why the saturation voltage is equal to the gate overdrive. The above-threshold current
equations. How above-threshold current depends on Cox and mobility. How transconductance
and drain resistance combine to generate voltage gain and what is the intrinsic voltage gain of
a transistor. What effect does velocity saturation have on transistor operation? What is DIBL
(drain induced barrier lowering) and II (impact ionization)? How transconductance and drain
resistance combine to generate voltage gain.
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4 Differential pairs, current correlator, bump circuits

Can you sketch a transamp, a wide range transamp, a current correlator, and a bump circuit
in both n- and p-type varieties?

How does a differential pair work? How does the common-node voltage change with the input
voltages? How can you compute the differential tail currents from the subthreshold equations,
and how do you obtain the result in terms of the differential input voltage?

How does a current-correlator work? How does a bump circuit work?

The I-V characteristics of a transconductance amplifier below threshold. What’s the functional
difference between simple and wide-output-range transamp? The subthreshold transconduc-
tance gm. The relation between gain A, transistor drain conductances gd, and transconductances
gm.

Can you reason through all the node voltages in these circuits? I.e., if we draw the circuit and
provide specific power supply and input voltages, can you reason to estimate all the other node
voltages, at least to first order approximations, assuming κ = 1?

5 Transconductance amplifier

The I-V characteristics of a transconductance amplifier below threshold. How the open-circuit
characteristics differ between simple and wide-output-range transamp. The subthreshold transcon-
ductance gm. The relation between A, gd, and gm.

6 Followers, transimpedance amplifiers

How to use a non-linear circuit, such as a operational amplifier, to compute linear functions.
What a unity-gain follower is used for. How to build a linear current-to-voltage converter
(although we didn’t build one in the lab).

7 Linear systems analysis, Time domain, follower integrator
and differentiator, Hysteretic differentiator, Second-order sys-
tems

How to compute the time-constant of a low-pass filter and how to estimate it from the mea-
surements. How to change the time-constant of a follower-integrator circuit.

The idea of using a lowpass filter (an integrator) to make a highpass filter (a differentiator). How
the differentiator circuit is not a real differentiator but only an approximation over some frequen-
cies defined by the time constant. How to sketch the transfer function of a differentiator circuit,
showing the time constant on the sketch. How to implement a simple follower-differentiator.

How these circuits behave when driven with large signals.

8 Winner-take-all circuit (WTA)

How does the WTA circuit work? Can you reason through its behavior? How does the bias
current affect its performance? How can you adjust the gain of the circuit by layout of the
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transistors?

9 Photodiodes, photoreceptor

What is the energy of a photon of a given wavelength? How does phototransduction occur in
silicon, i.e. how are electrons generated and how are they collected in a PN junction? What is
QE? How does the I-V curve of a diode change in the presence of light? How does absorption
length of photons change with wavelength over the visible and near infrared range? How can
you build a simple logarithmic photoreceptor?

How you can use adaptation in a feedback loop to cancel out circuit mismatch. How you can
build a fast logarithmic current-sense amplifier, by using feedback to make a virtual ground.
How you can use a capacitive divider in the feedback loop of an amplifier to set a gain. How
you can use a cascode configuration to increase effective drain resistance. What is the Miller
effect? How can a cascode can be used to reduce it?

10 Neurons, axon-hillock circuit

What is a neuron and what are its components (synapse, soma, dendrite)? What types of
models are used to simulate neurons? How does the spike-generating mechanism work? What
is an FI curve? Can you draw the circuit schematic of the axon-hillock neuron?

11 Synapses, adaptive neuron circuit

The schematic for a synapse circuit. How the synaptic current changes as a function of the
presynaptic frequency and the synaptic weight. How the firing frequency of an adaptive neuron
changes as a function of the presynaptic frequency and the biases to the adapting synapse.

12 Learning in silicon: Tunneling, hot electron injection

How do tunneling and injection mechanisms work? What is the shape of the energy band
diagram in the channel and oxide during tunneling and injection? How are the memory cell
circuits used to control tunneling and injection?

13 Long range communication, Address-Event representation

What is AER? How does an AER system mimic biology’s use of nerves? What constraints on
firing rate are important for an AER system? What does it mean to be asynchronous? To be
delay insensitive? What are the advantages and disadvantages of asynchronous designs? What
is an isochronous fork assumption? What does the term bundled data mean? What is a dual rail
encoding? What are the advantages and disadvantages of bundled data? How does a 4-phase
handshake work? What is an arbiter? What is a C-element and can you draw a circuit for one?
What is a staticizer and can you draw the circuit for one? Can you sketch the communication
architecture and timing for a 2-d AER chip (like a retina)?



8 Linear Systems Theory

In this chapter we will review some properties of linear time-invariant systems.
We consider their input/output relationship in the time domain, the impulse
response, and the convolution theorem. We also review basic concepts of
complex number theory; the Laplace transform, system’s transfer function, and
frequency domain analysis. More extended descriptions of this material can be
found in many standard textbooks (Carlson, 1986; Poularikas and Seely, 1994;
Oppenheim et al., 1996).

8.1 Linear Shift-Invariant Systems

In linear systems theory, a system is treated as a black box that does not reveal
its internal states, and is characterized only by the relationship between its
input and output (see Fig. 8.1). If a system has no internal stored energy, then
its output response y(t) is forced entirely by the input x(t):

y(t) = F [x(t)] (8.1.1)

where F [�] is the transfer function.

Linearity A system is linear if it obeys the two fundamental principles:
Homogeneity, and additivity.

The principle of homogeneity states that output scales linearly with the
input:

F [�x(t)] = �F [x(t)]: (8.1.2)

Usually, linear systems theory is applied to time-varying signals. However the
same methods can be applied to input and output signals that are distributed

SYSTEMx(t) y(t)

Figure 8.1
Typical black-box representation of a linear system. Its input is the signal x(t) and its output is the
signal y(t).



232 Chapter 8

OutputInput

Figure 8.2
Graphical example of the homogeneity principle of a linear system. The signals in the left
quadrants represent the system’s input, and the signals in the right ones represent its output. An
increase in the input signal causes a proportional increase in the output signal.

over space rather than time. For example, in Fig. 8.2, the input signal is a spatial
unit impulse and the output is a spatial Gabor function (a Gaussian modulated
by a cosine function)1

The principle of additivity states that if the input signal is composed
of elementary signals, then the system’s response is the composition of its
responses to each of the elementary signals:

F [x1(t)+x2(t)+� � �+xn(t)] = F [x1(t)]+F [x2(t)]+� � �+F [xn(t)]: (8.1.3)

Figure 8.3 shows a graphical example: If the response of the system to a
spatial impulse is a Gabor function, and if the system’s input signal is a linear
combination of spatial unit impulses, then the system’s response will be a linear
combination of Gabor functions.

The principles of homogeneity and additivity taken together are commonly
referred to as the principle of superposition, which state that a system is linear

1 Gabor functions are commonly used to model the (linear) response properties of a particular
class of neurons in the visual cortex.



Linear Systems Theory 233

OutputInput

Figure 8.3
Graphical example of the additivity principle of a linear system. The signals in the left quadrants
represent the system’s input, and the signals in the right ones represent its output.

if

y(t) =
X

k

akF [xk(t)] (8.1.4)

for input x(t) =
P

k
akxk(t), and ak constant for all k.

In other words, a system is linear if its response function F is a linear
operator:

F

"X
k

akxk(t)

#
= ak

X
k

F [xk(t)]: (8.1.5)

Shift Invariance A system is said to be shift-invariant if its responses to
identical stimuli shifted in time are also identical, except for the corresponding
time shift (Fig. 8.4).

If a system is shift-invariant, then its response function is also shift-
invariant: Given input signal x(t), its time-shifted variant x(t��) will produce

F [x(t� �)] = y(t� �): (8.1.6)

The system’s output signal is unchanged, except for a time shift.
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Input Output

Figure 8.4
Graphical example of a time-invariant system’s response.

Time invariance and linearity are two independent characteristics. Not all
linear systems are time-invariant and, similarly, not all time-invariant systems
are linear.

8.2 Convolution

Convolution is an important mathematical operator used in linear systems
analysis. The convolution of two time-varying signals, v(t) and w(t), is

v(t) � w(t) �

Z +1

�1

v(�)w(t � �)d� (8.2.1)

where � is the integration variable, and t is the independent variable.
Figure 8.5 shows a graphical representation of the convolution process

between signals v(t) (Fig. 8.5(a)) and w(t) (Fig. 8.5(b)) at three different time
steps. The result of the convolution is shown in Fig. 8.6. Note how the overlap
between the two curves is null for t < 0, increases for 0 < t < T , peaks at
t = T and decreases again for t > T .

If the independent variable for both input signals is the same, then it can
be omitted and we express the convolution between to the two signals v(t) and



Linear Systems Theory 235

v(t)

t0

(a)

w(t)

T t0

(b)

λ

v(λ)

0

(t<0)

tt-T

w(t-λ)

λ

v(λ)

0 tt-T

w(t-λ)

(0<t<T)

λ

v(λ)

0

(t>T)

tt-T

w(t-λ)

(c)

Figure 8.5
Graphical representation of the convolution between v(t) and w(t) for three different values of t.
Note that the integration variable � in (c) is on the abscissae of the plots. Modified from Carlson,
A. B. (1986).
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(0<t<T)

t

v

T

(t>T)(t<0)

w*

Figure 8.6
Result of the convolution between the two signals v(t) and w(t) of Fig. 8.5. The three dashed
lines are at the three values of t used in Fig. 8.5.

w(t) simply as v �w. The convolution operator is linear and has the following
properties:

commutative: v � w = w � v

associative: v � (w � z) = (v � w) � z

distributive: v � (w + z) = (v � w) + (v � z)

8.3 Impulses

The unit impulse or Dirac delta function Æ(t) is not a function in the strict
mathematical sense. It is defined by a set of assignment rules.

� If v(t) is a continuous function at t = 0 then

Z
t2

t1

v(t)Æ(t)dt =

(
v(0) t1 < 0 < t2

0 otherwise:
(8.3.1)

� If � is an arbitrary small numberZ +1

�1

Æ(t)dt =

Z +�

��

Æ(t)dt = 1: (8.3.2)
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From these rules we can infer that Æ(t) has unit area at t = 0 and that
Æ(t) = 0, for all t 6= 0. We can also note that the Dirac delta function has
no mathematical or physical meaning, unless it appears under the integral
operator.

Impulse Integration Properties

When used in conjunction with the integral operator, the Dirac delta function
has the following properties:

� Replication:

v(t) � Æ(t� �) = v(t� �) (8.3.3)

� Sampling: Z +1

�1

v(t)Æ(t� �)dt = v(�) (8.3.4)

where v(t) is a continuous time-varying signal.

Impulses in the Limit

There are many (proper mathematical) functions Æ �(t) that approach the Dirac
delta function Æ(t), in the limit:

lim
�!0

Æ�(t) = Æ(t) (8.3.5)

An example of such a function that is commonly used is

Æ� =
sin( t

�
)

t
: (8.3.6)

Figure 8.7 shows how Æ� of Eq. 8.3.6 approaches the Dirac delta function
as � decreases.

8.4 Impulse Response of a System

We can now use the notions of convolution and unit impulse to define the
impulse response of a linear time-invariant system. If y(t) is the system’s
response to its input x(t) we can write

y(t) = F [x(t)]: (8.4.1)
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Figure 8.7
Plot of the function sin(t=�)=t for three decreasing values of �.

If the input signal is the Dirac delta function (x(t) = Æ(t)), then the system’s
response to the unit impulse is defined as

h(t) � F [Æ(t)]: (8.4.2)

If x(t) is continuous in time, the replication property of the unit impulse
allows us to rewrite x(t) as x(t) � Æ(t). With this reformulation of the system’s
input signal, Eq. 8.4.1 becomes

y(t) = F

�Z +1

�1

x(�)Æ(t � �)d�

�
: (8.4.3)

If the system is linear, Eq. 8.4.3 is equivalent to:

y(t) =

Z +1

�1

x(�)F [Æ(t� �)] d� (8.4.4)

If we substitute Eq. 8.4.2 into Eq. 8.4.4, and if the system is time-invariant,
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then

y(t) =

Z +1

�1

x(�)h(t � �)d� =

Z +1

�1

h(�)x(t � �)d�: (8.4.5)

This property of linear time-invariant systems is extremely powerful. It states
that if a system’s impulse response h(t) is known, the response of the system
to any arbitrary signal x(t) can be computed simply by performing the convo-
lution of its impulse response with the signal itself:

y(t) = h(t) � x(t) : (8.4.6)

Step Response

We can define a system’s step response in the same way we defined its impulse
response. If the input signal x(t) is the step function

u(t) =

(
1 if t � 0

0 otherwise
(8.4.7)

then we define its step response to be

g(t) � F [u(t)]: (8.4.8)

A first interesting property can be obtained by exploiting the system’s impulse
response (see Eq. 8.4.6):

g(t) = h(t) � u(t): (8.4.9)

By applying the derivative operator to this equation, and noting that the deriva-
tive of the step function is the unit impulse, we obtain

d

dt
g(t) = h(t) �

d

dt
u(t) = h(t) � Æ(t): (8.4.10)

If we apply the unit impulse replication property (Eq. 8.3.3), then we obtain

h(t) =
d

dt
g(t): (8.4.11)

Thus, a system’s impulse response can be obtained by computing the derivative
of its step response. This property is extremely useful in practical situations be-
cause unit impulses are impossible to generate with physical instruments but
it is easy to generate waveforms that approximate ideal step functions. Conse-
quently, a physical linear time-invariant system is characterized experimentally
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Figure 8.8
Resistor capacitor (RC) circuits. The signals x(t) represent input voltages, and the signals y(t)
represent output voltages. (a) Integrator circuit; (b) Differentiator circuit.

by measuring its step response and then deriving its impulse response from
Eq. 8.4.11.

8.5 Resistor-Capacitor Circuits

The resistor-capacitor (RC) circuits of Fig. 8.8 represent first order, linear,
time-invariant systems. In both circuits, the input signal is x(t) and the out-
put signal is y(t). The circuits of Fig. 8.8(a) and (b) are referred to as RC
integrator and RC differentiator respectively. In this section we focus only on
the properties of the RC integrator. The properties of the RC differentiator will
be described in Chapter 9.

The integrator circuit of Fig. 8.8(a) is governed by the differential equation:

RC
d

dt
y(t) + y(t) = x(t): (8.5.1)

By solving Eq. 8.5.1 for a unit impulse input signal (x(t) = Æ(t)), we obtain
the circuit’s impulse response:

h(t) =
1

RC
e�t=RC � u(t) (8.5.2)

where u(t) is the step function. Similarly, solving Eq. 8.5.1 for a step input
signal (x(t) = u(t)), we obtain the circuit’s step response

g(t) = (1� e�t=RC) � u(t): (8.5.3)

Figure 8.9 shows the impulse response and the step response. The value
RC is defined as the system’s time-constant and is often labeled � . As pointed
out in Section 8.4, the response of the circuit to an arbitrary input signal can be
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h(t)
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1/RC

τ =

(a)

1

τ =

0.63

g(t)

RC t

(b)

Figure 8.9
Impulse response (a) and step response (b) of an RC circuit.

obtained by the convolution between the input signal and the circuit’s impulse
response:

y(t) = x(t) � h(t) =
Z
1

0

1

RC
e��=RC � x(t� �)d�: (8.5.4)

8.6 Higher Order Equations

Time-domain analysis becomes increasingly difficult for higher order systems.
Fortunately there is a unified representation in which any solution to a linear
system can be expressed: Exponentials with complex arguments. All solu-
tions to linear homogeneous (undriven) equations are of the form e st where s
is a complex number (see Fig. 8.10):

s = � + j! = M cos(�) + jM sin(�) (8.6.1)

where j =
p
�1, � is the real part of the complex number, ! is the imaginary

part, M represents its magnitude, and � its phase. Magnitude and phase of a
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j

M

φ

ω
=M

 sin(φ)

σ=M cos(φ)

σ

s

Figure 8.10
Complex number representation. The complex number s has magnitude M and phase �. Its real
part is � and imaginary part is !.

complex number obey the following relationships:

M =

p
�2 + !2 (8.6.2)

� = arctan
�!
�

�
: (8.6.3)

The magnitude of a complex number s is often denoted as jsj. Furthermore,
applying the properties of complex exponentials, one can observe that

ej� = cos(�) + j sin(�) (8.6.4)

e�j� = cos(�)� j sin(�): (8.6.5)

It follows that s can be also written as

s = Mej�: (8.6.6)

These notations can be used to solve higher order differential equations.
As an example, we consider the second order linear homogeneous equation

d2

dt2
V + �

d

dt
V + �V = 0: (8.6.7)
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Assume that est is an eigenfunction2 and substitute for V :

s2est + �sest + �est = 0: (8.6.8)

Solving for s we obtain

s =
���

p
�2 � 4�

2
: (8.6.9)

Consequently, if �2 � 4� � 0, s is real, otherwise s is a complex number. In
practice, if Eq. 8.6.7 is a linear system, we could measure its response V = e st

with a real instrument: but if est was a complex exponential, we would measure
only its real component:

Re
�
est
	
= Re

n
e(�+j!)t

o
= e�tRe

�
ej!t

	
: (8.6.10)

So the measured response of the system would be

Vmeas = e�t cos!t: (8.6.11)

Figure 8.11 shows the possible kinds of response of Vmeas for different values
of ! and �. If � < 0 all the solutions are stable and decay to zero with
time. If � > 0 all solutions are unstable and diverge with time. If � = 0

the solutions are naturally stable (they neither decay, nor diverge). All physical
passive linear systems will have stable solutions (� < 0). The ! axis scales the
oscillation frequency f of a solution (! = 2�f ).

8.7 The Heaviside-Laplace Transform

By analyzing the example of the previous section (see Eq. 8.6.7) we can make
the following observation: Any time we substitute the eigenfunction e st into a
linear differential equation of order n, the following property obtains:

dn

dtn
est = snest: (8.7.1)

In other words:

We can consider s as an operator meaning derivative with respect to time. Similarly,
we can view 1

s
as the operator for integration with respect to time (Heaviside).

2 An eigenfunction is a nonzero solution of a second order linear homogenous differential
equation
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Figure 8.11
The possible kinds of measured responses for a first order linear system.

This observation was made by Heaviside, when trying to analyze analog
circuits: but was also formalized by Laplace when he introduced the Laplace
Transform. The Laplace transform is a useful operator that links functions that
operate in the time domain with functions of complex variables:

L[y(t)] = Y (s) �

Z
1

�1

y(t)e�stdt: (8.7.2)

8.8 Linear System’s Transfer Function

Now that we have introduced the concepts of convolution (Section 8.2), im-
pulse response (Section 8.4), and the Laplace transform (Section 8.7), we can
define a linear system’s transfer function. It is a function defined in the com-
plex domain:

H(s) �
Y (s)

X(s)
(8.8.1)
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x(t) y(t)

Y(s)X(s)
H(s)

SystemInput Output

Figure 8.12
Typical representation of a linear system with input and output signals both in the time domain
(x(t); y(t)) and in the Laplace domain (X(s); Y (s)).

where Y (s) is the Laplace transform of the system’s output y(t) and X(s) is
the Laplace transform of the system’s input x(t) (see Fig. 8.12). Conversely,
we can say that the output of any linear time-invariant system is determined by
multiplying the system’s transfer function with its input:

Y (s) = H(s)X(s) : (8.8.2)

Transfer Function and Impulse Response

Consider the special case in which the system’s input signal x(t) is the unit
impulse x(t) = Æ(t). Its Laplace transform X(s) is

X(s) =

Z
1

�1

x(t)e�stdt =

Z
1

�1

Æ(t)e�stdt = 1: (8.8.3)

In this case, following the definition of Eq. 8.8.1, the system’s response in the
complex plane is

Y (s) = H(s): (8.8.4)

On the other hand, the system’s response in the time domain is (by definition)
its impulse response:

y(t) = h(t): (8.8.5)

Because Y (s) is the Laplace transform of y(t), we can substitute Eq. 8.8.5
into Eq. 8.7.2:

Y (s) =

Z
1

�1

y(t)e�stdt =

Z
1

�1

h(t)e�stdt (8.8.6)
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and so

H(s) =

Z
1

�1

h(�)e��sd� = L[h(t)] : (8.8.7)

The transfer function H(s) is the Laplace transform of the impulse response
h(t).

Summary Given a linear time-invariant system with input x(t), output y(t),
and impulse response h(t):

y(t) =x(t) � h(t)

Y (s) =X(s)H(s)

where

X(s) =L[x(t)]

Y (s) =L[y(t)]

H(s) =L[h(t)]:

8.9 The Resistor-Capacitor Circuit (A Second Look)

Consider again the RC circuit of Fig. 8.8. As mentioned in Section 8.5, this
circuit is governed by

�
d

dt
y(t) + y(t) = x(t) (8.9.1)

where � = RC.
In the complex domain, we have

Y (s)(�s + 1) = X(s): (8.9.2)

Therefore the circuit’s transfer function is

H(s) =
1

1 + �s
: (8.9.3)

Consider now how this circuit responds to sinusoidal signals of different
frequencies. Sinusoids have a very special relationship to shift-invariant linear
systems, such as the one we are analyzing. When a sinusoidal signal is applied
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Figure 8.13
Bode plot of a first order linear system, such as the RC circuit of Fig. 8.8. (a) Magnitude, (b) Phase.
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as input to a shift-invariant linear system, then its response will be another
sinusoidal signal, with possibly a different amplitude and a different phase,
but certainly with exactly the same frequency! That is, if the input is x(t) =

sin(!t), the output will be y(t) = A sin(!t + �), where A and � determine
the scaling and shift.

When we analyze a system using sinusoidal signals of different frequen-
cies, we are working in the frequency domain. In this domain s = j! and the
circuit’s transfer function is

H(j!) =
1

1 + j!�
: (8.9.4)

From this transfer function, we make two useful observations:

1. If the frequencies of the sinusoidal signals are small with respect to the
circuit’s time-constant (!� � 1), then the circuit’s output will resemble its
input (Y (j!) � X(j!)).

2. On the other hand, if the frequencies are large with respect to the circuit’s
time-constant (!� � 1), then

Y (j!)

X(j!)
�

1

j!�
: (8.9.5)

These observations are also reflected in the plots of the transfer function’s
magnitude and phase (Fig. 8.13). These plots are referred to as Bode plots
and they are used to analyze the response of a dynamic system in terms of its
transfer function. The magnitude of the transfer function is

jH(j!)j =
1

p
1 + (!�)2

(8.9.6)

and its phase is

� = arctan(�!�): (8.9.7)

The frequency ! = 1

�
is defined as the cutoff frequency . In Fig. 8.13 it is set

to one.
The RC circuit of Fig. 8.8 is a low-pass filter, because it allows sinusoidal

signals with frequencies lower than the cutoff frequency to pass virtually
unchanged. On the other hand, the frequency components of the input signals
that are above the cutoff frequency are attenuated. The phase lag between the
input and the output of the system increases with ! (see Fig. 8.13(b)) and
saturates at �90Æ. Figure 8.14 shows experimental data measured from an RC



Linear Systems Theory 249

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

Normalized time units

N
or

m
al

iz
ed

 R
C

 r
es

po
nc

e

Input
50 Hz
100 Hz
200 Hz
400 Hz

Figure 8.14
Response of an RC low-pass filter (R = 10M
, C = 1nF ) to input sinusoids of different fre-
quencies. The input signals have been normalized to unity, and the outputs have been normalized
with respect to the input. The time axis has also been normalized so that the responses to all the
frequencies could be presented on the same graph.

lowpass filter with R = 10M
 and C = 1nF . Sinuosoids of increasing
frequency were applied to the circuit and the corresponding responses were
measured. To show the effect of a range of input frequencies on the circuit’s
response, all the data are plotted on a normalized scale. The responses have
been normalized with respect to the input and time has been normalized to
unity. As expected, the output signal is attenuated as the input frequency
increases; and the phase lag between the input and output signals increases
with increasing frequency.

8.10 Low-Pass, High-Pass, and Band-Pass Filters

The RC circuit analyzed in the previous sections is the simplest example of
a passive filter. Filters are typically used to alter the frequency spectrum of
their input signals. Specifically, filters allow one or more frequency bands
to pass unchanged (except for a multiplicative gain factor), whereas others
are attenuated. Passive filters do not amplify the input signal, whereas active
filters can also amplify the frequency components of the input signal. If a filter
transmits low frequency components (from DC to a lower cutoff value ! l), it is
said to be a low-pass filter. If it transmits high frequency components (higher
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than a cutoff value !u), it is said to be a high-pass filter. Filters that transmit
only frequency components between a lower cutoff and an upper cutoff are
said to be band-pass filters.

The analysis of linear systems often assumes ideal filters. These filters have
distortionless signal transmission over one or more frequency bands, and have
zeros responses at all other frequencies. For example, the transfer function of
an ideal bandpass filter is:

H(!) =

(
Ke

�j!td !l � j!j � !u

0 otherwise:
(8.10.1)

Although ideal filters cannot be implemented in practice, their use in theoreti-
cal analysis simplifies the study of linear systems.
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Circuit Diagram
Name, Objectives and
Function

Key Equations Assumptions

NFET Current Source:
Control current in a device
through applied voltage.

In Saturation:

Ids = In0e
κnVg−Vs

UT

Not in Saturation:

Ids = In0e
κnVg
UT (e

−Vs
UT − e

−Vd
UT )

• Neglecting Early Effect
(in Saturation)

• Neglecting Back Gate
Effect

• Assuming W/L = 1

• Operating in Sub-
threshold

• Probably a lot more as-
sumptions

• We’ll name these as-
sumptions Standard
Subthreshold Transistor
Assumption.

PFET Current Source:
Control current in a device
through applied voltage.

In Saturation:

Isd = Ip0e
−κpVg+Vs

UT

Not in Saturation:

Isd = Ip0e
−κpVg+Vs

UT (1− e
Vds
UT )

• Standard Subthreshold
Transistor Assumption.

Diode Connected
NFET:

• By connecting Vg to Vd,
we enforce the transis-
tor to run in saturation.

• The current flowing cre-
ates a feedback loop
between the drain and
the charge where both
automatically adapt to
match each other and
work saturation.

• This yields that cur-
rent controls gate volt-
age. This is very impor-
tant as it is a clever way
to adjust gate voltage
from the current, which
is typically not possi-
ble as there is infinite
impedance between the
channel (source, drain
and well) and the gate.

Ids ≈ In0e
κnVg−Vs

UT

• Standard Subthreshold
Transistor Assumption.

N-Type Current Mir-
ror:

• Creating a ”Mirrored
copy” of the input cur-
rent.

• Mirrored copy and
eventually be scaled
with given gain by
playing with the two
transistor size or by
having different source
voltages for M1 and M2

• P-Type version works
just the same in reverse.
Know how to draw it!

• No gain:

Iin = Iout

• Gain by adjusting transistor
size:

Iout =MIin =
W2/L2

W1/L1
Iin

• Gain by having different
source voltages:

Iout =MIin = e
Vs1−Vs2

UT Iin

• Standard Subthreshold
Transistor Assumption.

N-Type Source Fol-
lower:

• Linearly transforms
a voltage at a high-
impedance input
terminal into a voltage
at a lower-impedance
output terminal

• We get is thus an out-
put voltage which fol-
lows the input voltage,
and can be scaled with
the gate voltage from
the current source that
we connect it with.

Vout = κn(Vin − Vbn) (231)

• Standard Subthreshold
Transistor Assumption.

• Vout > 4UT to keep M2

in saturation.
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Axon-Hillock Circuit:

Emulation of an integrate-
and-fire neuron model

• At the beginning,
Iin, Vmem = 0 =⇒
Vout = 0 and the reset
transistor is turned off
(Ir = 0)

• For a constant input
current Iin, the ca-
pacitors charge up and
Vmem increases linearly

• When Vmem >
Vthr =⇒ Vout = Vdd
and the reset transistor
is turned on (Ir > 0)

• As Ir ≫ Iin, the capac-
itors are discharged and
Vmem decreases linearly
until Vmem < Vthr

• Drawback: Large
power consumption if
two inverting amplifiers
are used as a non-
inverting amplifier due
to slow switching times
(as proposed in original
circuit)

Spike time interval (f = 1
tL
)

tL =
Cfb
Iin

Vdd

Pulse width:

tH =
Cfb

Ir − Iin
Vdd

Positive Feedback

∆Vmem =
Cfb

Cm + Cfb
Vdd

• Standard Subthreshold
Transistor Assumption

• Operation in saturation
regime

Conductance-based
Silicon Neuron:

Emulation of a bi-
ologically plausible
conductance-based silicon
neuron

• It consists of three
components: passive,
sodium (positive feed-
back) and potassium
(negative feedback)

• Drawback:

• Standard Subthreshold
Transistor Assumption

• Operation in saturation
regime
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