
6CCYB070 BEng Research Project

Deep Learning of neonatal
connectivity to predict

neurodevelopmental outcome

Yassine Taoudi
Benchekroun

Supervisors: 
Dr. Maria Deprez 
Dr. Dafnis Batalle

Project Report submitted in partial
fulfilment of the Bachelor of Engineering

degree in
Biomedical Engineering

April 2019



Acknowledgments

I would like to express my gratitude to my two supervisors Dr Maria Deprez and

Dr Dafnis Batalle, who have offered me the chance to work on a project I greatly

enjoyed. They have both guided me throughout this project and have always provided

invaluable suggestions and support. I would also like to particularly thank Mrs. Irina

Grigorescu, PhD student, without whom the last section of this project would not have

been possible, and for her patience and resourcefulness.

i



Abstract

Perinatal brain development provides important roots for expansion of motor, cognitive

and behavioral abilities. It is also a period where many irreversible disorders can

develop. State of the art Deep Learning methods can be extremely useful to predict

neurodevelopmental outcomes from complex data such as brain connectivity – thus

allowing early identification of potential disorders or delays and enabling more efficient

and faster treatment. In this work, we attempt to predict various neurodevelopmental

outcomes using Dense Fully Connected Neural Networks with the developing Human

Connectome Project (dHCP) data set. Firstly, we achieve accurate prediction of post

menstrual age at scan from structural connectome with (Mean Absolute Average of

0.7 weeks on term and preterm infants, and 0.9 weeks on preterm infants only). We

also accurately predict gestational age at birth from structural connectome (Mean

Absolute Average of 1.1 weeks). We also show that preterm infants have significant

developmental delays in connectivity compared to term infants. Secondly, we focus

on Neurodevelopmental assessment (Bayley III Score) and attempt to replicate the

findings of previous studies that were able to accurately predict neurodevelopmental

score from structural connectome (Relative error≈ 5%). We do not achieve satisfactory

results on this task with the dHCP data set and come to question some methods used

in the publication. Finally, we build a term against preterm Dense Neural Network

classifier (reaching accuracy of 90% on testing) that we interpret with Layer wise

Relevance Propagation. We are able to identify core connections that are most affected

by gestational age – these findings agree with previously published work.
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Project Plan

Problem:

Understanding how cognitive function emerges from a specific anatomical substrate of

the brain is one of the current research goals of Neuroscience. Diffusion MRI offers

insights into structural connectivity in the brain while functional MRI provides key in-

formation about the functional connectivity. However, the exact relationship between

them is still not fully understood. The problem is particularly important for neonates

and their neurodevelopment: indeed, improving our understanding of how structural

and functional connectivity are linked will help in understanding the normal develop-

ment of cognition and how preterm birth can impair neurocognitive development.

State of the art:

Machine learning is an increasingly important tool in the field of Neuroscience. Re-

cently, convolutional neural networks with an edge-to-edge, edge-to-node, node-to-

graph convolutional filters that leverage the topological locality of structural brain

networks were successfully used to predict cognitive and motor development (Kawa-

hara et al., 2017). We hypothesize that neural networks can also be used to predict the

complete functional connectivity matrix based on the structural connectivity matrix.

Aims:

Build a deep learning model to predict the functional connectivity of the brain from

the structural connectivity and see how this evolves depending on gestational age. The
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developed tools will facilitate deeper understanding of the impact of prematurity on

neurocognitive development

Work plan:

1. Learn how to use the Deep Neural Network libraries such as Tensor Flow or Nifty

Net and implement elementary neural networks. Study more complex network

architectures such as auto encoders that will help to regularise the fitted models.

2. Develop and tune a deep neural network for prediction of gestational age at scan

and birth from structural and/or functional and connectivity matrices.

3. Analyse the developmental patterns that drive the predictions.

4. Train convolutional neural network to predict functional connectivity matrix from

structural connectivity matrix using regularised deep neural networks such as

auto encoders.

Deliverables:

Accurate deep neural network tool for prediction of gestational age from structural

and functional connectivity. Insights into our ability to predict functional connectivity

from structural connectivity using regularised deep neural networks.

Evaluation

Accuracy of the predictions of the gestational age and connectivity matrices. Accuracy

of prediction of Functional connectivity from structural connectivity.
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Project Timeline:
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Project Plan Deviation

For this project, phase 1 and 2 have been executed on time as initially planned. Indeed,

proficiency was reached in the deep learning library Keras (phase 1) within a few weeks

after the start of the project. The first accurate models predicting age at birth and

age at scan from structural connectome (phase 2) were obtained in November. Train-

ing convolutional neural networks to predict functional connectivity from structural

connectivity (phase 4) was also attempted on time as initially planned, but this was

put aside due to the high complexity of the task. Another reason for putting aside

phase 4 was the release of neurodevelopmental outcomes data from the dHCP, which

coincided with the publication of (Girault et al. 2019) who achieve accurate predic-

tion neurodevelopmental outcome from structural connectome. Great motivation was

thus found in attempting to replicate their results with the dHCP data set. Phase 3

was also executed as initially planned, although with methods that were not originally

known when writing the project plan. This also took longer than originally planned.

Overall, although the initial project plan was not thoroughly respected, numerous in-

teresting experiments and findings that were not initially planned came through during

the realisation of this project.
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Chapter 1

Introduction

1.1 Background

1.1.1 Brain Connectivity

Brief history of modern Neuroscience

Two radically opposed views on Neural Organization caused an important controversy

during the second part of the nineteenth century. The first theory, called “Neuron

Doctrine” mainly supported by Scientists such as Ramon y Cajal and Camillo Golgi,

claimed that nervous system was composed of individual cellular units called nerve

cell, or neuron. The other theory, called “Reticular Theory”, rejected the individuality

of the nerve cell, and claimed that the entire nervous system was a continuous nerve

network. The neuron doctrine, by the end of the 19th century, has been accepted

and has remained the foundation of modern Neuroscience (Sporns 2010). Although

the theory supported by Cajal and Golgi (for which they both won a Nobel Prize in

1906) still firmly holds today; the way in which these individual nerve cells achieve

continuity and collective action within the brain, thus allowing cognitive function, is

far from being resolved.
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Figure 1.1: Ramon y Cajal Drawing of Neurons in 1906 (Courtesy of Cajal Institute)

The Connectome Idea

Network science is a relatively new field of study which allows consideration of in-

dividual elements (represented by ”nodes”) as well as the connections between these

elements (represented by ”edges”). This scientific paradigm has greatly benefited from

the rapidly growing computing power in the last 30 years, and it’s consequently had

an important impact on various fields of study, including social science, economics,

mathematics, physics and neuroscience (Watts 2004). Indeed, in Neuroscience, struc-

tural information is needed (i.e. knowledge of individual nerve cells) as well as a how

these individual elements interact to achieve collective action. Network theory has

thus appeared to be a very promising way to address these problems. Plans of build-

ing a comprehensive map of the brain’s neurons and their connections hence started

to emerge. The development of Electron Microscopy allowed John Graham White et

al. in 1986 to build the first full nervous system map of a specie: the Caenorhabditis

elegans, a roundworm measuring less than 1mm (White et al. 1986). Every single 302

neurons that this roundworm possesses has been mapped along with its connections.

This is, to this day, the only specie of which we have a full nervous system map.
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Figure 1.2: On the Left, image of Caenorhabditis elegans, on the right, its full

structural connectome (White et al. 1986)

Efforts on this have carried on and soon reached the human brain, notably with

the research of Olaf Sporns et al. who published a landmark paper in 2005 where

the importance of working towards building a detailed map of the human brain - a

”Connectome” - is strongly emphasized:

“To understand the functioning of a network, one must know its elements and their

interconnections. The purpose of this article is to discuss research strategies aimed at a

comprehensive structural description of the network of elements and connections form-

ing the human brain. We propose to call this dataset the human “connectome,” and we

argue that it is fundamentally important in cognitive neuroscience and neuropsychol-

ogy.” (Sporns et al. 2005).

Different types of brain connectivities

There are 2 main different types of brain connectivities that give various information

about the structure of the brain and its functioning.

• Structural Connectivity: refers to a set of structural connections linking neu-
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ral elements. Usually is weighted and hence has information on the strength

of the connections (Sporns 2010). It can be visualized with techniques such as

diffusion Magnetic Resonance Imaging or Tractography.

• Functional Connectivity: It is a brain mapping technique that statistically

evaluates regional interaction in resting state or task-based state. The basis of

all functional connectivity is time series from neural recordings. It is, unlike struc-

tural connectivity, very dependant on time, and can change within milliseconds.

The statistical dependence shown in functional connectivity is a correlation, not

a causation. It can be visualized with techniques such as functional Magnetic

Resonance Imaging (Sporns 2010, Friston et al. 1993).

Figure 1.3: From left to right, structural and functional connectivities.

(Cabral et al. 2017)
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We know that both functional and structural connectivity are intrinsically linked to

each other (Honey et al. 2010), however, the exact way in which they interact is still not

fully understood in the world of Neuroscience. Recent progress in statistical physics

and graph/network theory have thus been translated to analysis of the Neuroimaging

data to improve our comprehension of structural and functional connectivities. Indeed,

many complex network properties and have been successfully identified in connectivity

data such as small-worldness (Bassett & Bullmore 2006). Recent studies have also

showed how various disorders such as Alzheimer’s disease or Schizophrenia are associ-

ated to specific differences in brain connectivity (delEtoile et al, 2017; Lynall, Basset

et al 2010). Network theory as a tool to study brain connectivity is, in consequence of

its success in previous years, rapidly growing and proving to be a powerful framework

to have greater insight into the way the brain functions.

Imaging the Brain

Until the 1900’s, observing the brain meant physically analysing it, by using various

observation tools such as microscopes and developing innovative techniques for staining

and sectioning nerve tissue cells. It is only with the apparition of imaging techniques

that greater insight into the brain started to emerge. Today, many different imaging

techniques allow to have different types of images of brain structure and activity; the

most impactful one in Neuroscience research is Magnetic Resonance Imaging (MRI).

Magnetic Resonance Imaging (MRI) is the most versatile and detailed soft tis-

sue imaging method that we have today. It is a safe non-invasive method based on

the phenomenon of Nuclear Magnetic Resonance. Nuclei have a quantum mechanical

property called spin that make them behave like magnets. By placing nuclei in a very

strong magnetic field, a tiny excess proportion of them will align with the magnetic
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field, resulting in a small net magnetic moment that is measurable. To have a better

signal, MRI mainly focuses on hydrogen nuclei (H1) which are in abundance in all

body tissue. There is no “Standard MRI scan”, there are a great number of different

contrasts and parameters to observe various things. Two recently developed methods

have been widely used in Brain Connectivity research:

Diffusion Magnetic Resonance Imaging (dMRI) is a technique allowing study

of the brain anatomy. dMRI takes advantage of the difference in diffusion of water

molecules along the axonal bundles, which provides anatomical information about the

white matter and allows to estimate anatomical organization of the brain.

Figure 1.4: Tractography image (adapted from (Sporns 2010)

Functional Magnetic Resonance Imaging (fMRI) is a technique allowing to

measure brain activity. It relies on the fact that neuronal activation and cerebral

blood flow are coupled. fMRI takes advantage of the differences in magnetic field

of oxygenated and deoxygenated blood in the brain in order to measure functional

activity. This method is called Bold Oxygenated Level Dependant (BOLD) imaging
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(Sashank J. Reddi paper, Wikipedia functional MRI).

Neurodevelopment

Human brain functional and structural early development provides highly important

roots for the expansion of motor, cognitive and behavioural abilities – much of which

happens perinatal period. Studying Neurodevelopment thus appears fundamental to

understand adult brain functionality. The recent progresses in Neuroimaging have en-

abled Neurodevelopmental science to greatly progress. Indeed, with the advance of

technologies like MRI, it is now possible to safely acquire detailed images of brain at

prenatal and early post-natal period. However, acquiring these images has proven to

be very difficult; indeed, issues like motion of the foetus/infant make the acquisition

of the scan challenging. Various approaches to motion correction using both prospec-

tive (Andersson et al. 2017, Ferrazzi et al. 2014) and retrospective techniques have

allowed acquisition of reliable images (Cordero-Grande et al. 2016). Such progresses

have allowed the rise of important research project such as the developing Human

Connectome Project (dHCP), led by King’s College London, Imperial College London

and Oxford University. The dHCP aims to create the first 4-dimensional connectome

of early life. They have to date scanned more than 700 infants at a prenatal or early

postnatal period using state of the art MRI techniques. The dHCP data has been used

for execution of this work. These studies are allowing invaluable insights into the dras-

tic changes undergone by the brain during early development. Indeed, the perinatal

period is a time of establishment and consolidation of brain connectivity where funda-

mental connections are established (Batalle et al. 2018). Studying the development of

brain networks is of particular importance in the case of preterm birth where chances

to develop cognitive disorders or delays is important – it is hence crucial to under-

stand the impact of shortened neurodevelopment and its long-term effects. This allows
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risk assessment for the development of cognitive delays and disorders such as autism

(Brown et al. 2018, Girault et al. 2019) The newly trending Machine Learning and

Deep Learning methods are now offering new possibilities from traditional statistical

analysis to observe and take advantage of hidden patterns in brain networks.

1.1.2 Deep Learning

Figure 1.5: Artificial Intelligence, Machine Learning and Deep Learning

Artificial Intelligence

Artificial intelligence (AI) was born in the 1950’s, a few years after the development of

the very first computer, when pioneers of computing started to ask whether a computer

could be made to “think” by itself. Indeed, in a 1950 landmark paper by Alan Turing

(Turing 1950), where the Turing test was introduced, as well as key ideas that would

come to shape AI - Could a computer go beyond what it is programmed for? This

question opened doors to new programming paradigms and was at the origin of what

is today called Machine Learning – an application of AI that provides the ability for

a computer to learn patterns of various types without being explicitly programmed.

(Francois 2017)
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Machine Learning

Figure 1.6: Difference between Classical Programming and Machine Learning

(Francois 2017)

In opposite to the traditional programming paradigms where a set of rules are explic-

itly programmed, Machine Learning is trained and learns the rules by experience. Two

main types of Machine Learning algorithms are to be distinguished: Supervised ma-

chine learning where the algorithm is given a set of input data points, as well as their

corresponding outputs. The algorithm then learns a meaningful representation of the

data which gets it as close as possible to the desired output. There are many poplar

supervised ML algorithms such as decision trees, random forests, Support Vector Ma-

chines... In Supervised Learning, the corresponding outputs can either be discrete (i.e.

set of classes), in which case the algorithm does a classification task; or continuous

where the algorithm does a regression task 1.7. The other ML algorithm is unsuper-

vised; the algorithm is only given a set of input data points without their corresponding

output it then attempts to make sense of it by extracting features or patterns in the

data on its own.
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Figure 1.7: Classification and Regression (Ngoma 2017)

Deep Learning

Deep Learning is a subcategory of Machine Learning which tries to overcome some of

its limitations. Indeed, for many years, ML algorithms struggles to process natural

data in their raw form, careful data engineering and domain expertise was needed to

obtain satisfying results on complex pattern recognition tasks (e.g. Image recognition).

Deep Learning addresses the same ML issues with similar methods but putting an

emphasis on learning with successive layers of increasingly meaningful representation

(Francois 2017). More layers in a model (i.e. a deeper model) hence have the ability

to learn more abstract representation of the original data. Hence, with enough of such

transformations, increasingly more complex functions can be learned. Today, the most

commonly used Deep Learning algorithm is a Neural Network (NN), an algorithm

developed as a reference to biologic Neural Networks. A NN is built as shown in figure

1.8.
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Figure 1.8: Principle of a Neural Network (Francois 2017)

When building a Neural Network, the objective is to find the best combination of

weights to perfectly map the input data to the corresponding labels. This combination

of weights is optimized in several iterations during training. As shown in the figure

above, the Input vector passes through the various layers and (at first random) weights

of layers; the forward pass being done, a prediction Y’ is obtained and compared

to a true expected value Y with the help of a loss function (also called “objective

function”). The loss score represents how close the predicted Y’ is from desired Y (e.g.

mean absolute error). Based on this loss score, a backward pass is done to update the

weights accordingly. This process is done at each iteration. The algorithm in charge of

updating the weight is called Backpropagation and was developed by Geoffrey Hinton

in 1986. (Hinton et al. 1986). Backpropagation computes the gradient of the objective

function with respect to the weights through a chain rule of derivatives – this allows

to update the weights of each layer depending on their contribution to the final loss

score, thus allowing a better combination of weights for the next iteration.
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Although this was understood as early as the 1980’s, it is only with the drastic in-

crease in computational power and the rise of modern GPU’s that such computationally

expensive algorithms could be put in practice. Deep Learning has achieved impressive

performances in tasks such as image classification, speech recognition, machine transla-

tion etc. . . It is today widely used for many different applications, including healthcare

and specifically Neuroscience.

Deep Learning in Neuroscience

Today, Deep Learning is having a large impact on many different aspects of healthcare

such as diagnosis of diseases with visual recognition tasks from different imaging data,

or segmentation tasks (Ronneberger et al. 2015). It is also having great impact in the

field of Neuroscience and various of its sub fields, including Brain Connectivity. The

large number of parameters and variability in Brain Connectivity data makes it very

difficult for the naked eye to spot patterns in structural and functional connectivity;

basic statistical analysis is also not always able to makes sense out of abstract behaviour

in rich data as complex as a connectome. Deep Learning methods, having been designed

to address such problems, thus appear to be of great potential to improve scientific

understanding of the inner functioning of the brain.

1.2 Objectives

Deep Learning is, since 2015 with the publication of (Ronneberger et al. 2015), cur-

rently greatly impacting Healthcare technologies. It is indeed particularly useful for

early diagnosis of diseases that are particularly challenging to spot. This is of crucial

importance as it allows earlier treatment and hence allows longer life span, better care

etc... This is the case in Neurodevelopment, where many disorders develop from a very
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early age and are likely to irreversible consequences. Deep Learning can thus play a key

role in predicting various neurodevelopmental outcomes at an early stage and minimize

risks of developping disorders. An important issue with regard to this predictions is

to understand how are Deep Learning algorithms able to correctly predict, otherwise,

why should they be trusted? This work will thus attempt to predict various important

neurodevelopmental outcomes with deep learning methods, and try to interpret the

models’ decisions with state of the art deep learning interpretation methods.

1.3 State of the Art

There has been to date various studies using Deep Learning for various tasks in Brain

Connectivity and Neurodevelopment. In Neurodevelopment, an important task has

been to use Deep Learning to predict clinical neurodevelopmental outcomes from Brain

Networks.

BrainNetCNN (Kawahara et al. 2017) is a Convolutional Neural Network composed

of edge to edge, edge to node, and node to graph convolution filters on Structural

Connectivity to predict post menstrual age at scan (PMA) and cognitive performance.

This model allows consideration of topological locality of structural brain networks -

the connectome is thus treated as an image and not taken as a vector of features as

in other publications dealing with structural connectome in Deep Learning (Munsell

et al. 2015, Girault et al. 2019).

Figure 1.9: (Kawahara et al. 2017) Neural Network Architecture
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Each of the three-layer (edge to edge, edge to node, node to graph) type is built

around one or more convolutional filter and takes all feature maps from previous layer

as input and outputs a distinct feature map for the next layer. It has been built to

predict for neurodevelopmental outcomes such as cognitive and motor scores (assessed

at 18 months of age) and prediction of age at scan. The data used for training the model

is made of 115 infants born pre term and scanned between 27 and 46 weeks (adding

up to 168 scans as some infants were scanned twice). Each network is represented

as 90x90 symmetric adjacency matrix. The cognitive and neuromotor function were

assessed using Bayley Scales of Infant and Toddler Development (Bayley-III) (Albers

& Grieve 2007). They achieve prediction with mean absolute error (MAE) of 2.17

weeks (or 11% of age range) on prediction of age at scan. They also achieve prediction

of Cognitive outcome with MAE of 10.6 points on Motor score and 10.4 points on

Cognitive score.

Another recent study (Girault et al. 2019) similarly focused on using structural

connectome at birth to predict cognitive abilities at age 2 with Neural Networks. The

Cognitive assessment used was the Mullen score (Mullen et al. 1995) , which is slightly

different to more commonly used Bayley III Their data was composed of 115 infants

born between 30 and 42 weeks and scanned from 36 to 46 weeks. Due to difficulties in

predicting directly cognitive score, they used a twostep approach: Firstly, classification

Neural Network was trained from term babies using K fold cross validation to predict

from a given structural connectome if the cognitive score was above median (AM)

or below median (BM). The Neural Network was a dense fully connected Network,

with one input layer of 3003 nodes (vectorized structural connectome), five hidden

layers, five activation layers, 3 dropout layers and one output layer with two nodes,

each outputting a class (AM or BM) probability. The second task consisted in using

the classification probability to fit two different linear regression models (one for AM
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classified infants and one for BM classified infants) and predict the actual cognitive

score of the infant. On the classification task, they achieved an accuracy of 89.5%

on term babies, and 83% on preterm babies. On the linear regression, they obtained

results that were highly correlated with the actual cognitive score: r = 0.98 for term

babies and r = 0.96 for preterm babies.

All these Deep Learning studies, although important and precise, are of great diffi-

culty to understand (how precisely do they classify/predict). This is a common problem

in all Deep Learning models; this is why a new field of study called interpretability

has emerged to answer such concerns. Several studies have been led to date, and var-

ious methods were proposed, mainly looking at image classifiers using Convolutional

Neural Networks(Lundberg & Lee 2017, Bach et al. 2015). A recent study introduced

Layer-wise Relevance propagation (LRP) (Bach et al. 2015) – a backward propagation

technique applicable in various computer vision applications. This method assigns a

relevance score to each feature (or voxel if dealing with images) by iteratively propa-

gating through each layer’s output to its predecessor until the input layer is reached.

This allows to create “Relevance maps” where visualisation of the features that were

most important during regression/classification task can be highlighted. The relevance

map is different for each input, meaning that activation is different across each data

sample.
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Figure 1.10: Relevance Map of NN classification between number 4 and number 9.

Adapted from (Bach et al. 2015)

Figure 1.10 shows relevance map of classification task on MNIST data set (popular

data set in deep learning with images of hand-written numbers). The left-hand side

shows the relevance map for the image of a four on actually being a four (propagating

through the output node corresponding to number 4 probability). The right-hand side

figure shows the relevance map for the image of a four on being a nine (propagating

through the output node corresponding to number 4 probability). Positive relevance

is shown in red and negative relevance is shown is blue. It can be seen that on the

left-hand side figure, the space in between the two bars is systematically shown in

red, which increases the probability of it being a four. On the right-hand side, the

same space between the two bars of the four is shown in blue, meaning it decreases

the probability of it being a nine. This is coherent as the main difference between the

number 9 and 4 is this specific gap between the two bars.

The work presented in this report will attempt to use various Deep Learning meth-

ods to evaluate all these studies using the dHCP data set. We propose a fully connected

Neural Network that outperforms BrainNetCNN in prediction of age at scan (MAE of
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0.7 weeks). We also propose a fully connected Neural Network which predicts Age at

Birth of babies with MAE of 1.1 weeks, which has (to our knowledge) never been done

in the literature. We also build a term/preterm classifier from Structural Connectiv-

ity data using a fully connected Neural Networks where we reach accuracy of 90% on

classification. We interpret this model using Layer-wise relevance propagation (Bach

et al 2015a) and are hence able to underline the connections that had the most impact

in the classification task. We also attempt to replicate the results of (Girault et al.

2019) using dHCP data set and classification of above/below median cognitive score

and prediction of exact cognitive score from Structural and Functional Connectivity

data.

17



Chapter 2

Methods

2.1 Data

2.1.1 Scanning infants

Infants scanned

The developing Human Connectome project to date has more than 700 scans of infants

at prenatal or postnatal stage; our study focuses exclusively on scans executed at a

postnatal stage. Structural and functional connectivity information (acquired with

dMRI and fMRI) was available for 425 infant scans to conduct this study. The age

range (age at birth – Gestational Age) for all infants was from 23 weeks of gestation to

42 weeks. We count 314 term babies (Gestational Age ≥ 37 weeks) and 111 pre term

babies (Gestational Age < 37 weeks). Infants were scanned at different Post Menstrual

Age (age since gestation) ranging from 35 to 45 weeks.
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Figure 2.1: Boxplot distribution GA and PMA of available data set

Ensuring safe and comfortable acquisition for infants

As executing MRI scanning in neonates is very challenging due to motion and fragility

of the infants, the developing Human Connectome project has designed a full neonatal

brain imaging system around 5 main important elements: Head Coil, positioning,

Immobilization, Gradient noise and transport (Hughes et al. 2017). The head coil, to

maximise the Signal to noise ratio (SNR), needs to be fitted as close as possible to

the head while having as many channels as possible. After estimating the maximum

diametric of the oldest infant in the targeted group, the chosen size of head coil was

155 mm from anterior to posterior, 130mm from right to left and 140mm from inferior

to superior. The number of channels was set at 32. The designed positioning device,

which is a lightweight protective “shell” allowed preparation of the neonates away from

the scanner and held infants in secure position. It also ensured easy access in case of

emergency. This shell was positioned on an MRI safe trolley to ease transportation.

The immobilization of the infant in the shell was done through bead filled pads to insure

comfort. As they are positioned in over the ears, they serve as acoustic protections.
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To avoid sudden sound changes which might wake up the infant, the MRI software was

modified in order to linearly increase the noise from 0 to operating point.

MRI acquisition

All scans were collected in St Thomas hospital London on a Philips 3T scanner. For the

acquisition of the structural MRI, T1 weighted images were acquired using an inverse

recovery Turbo Spin Echo sequence with resolution repetition time (TR) = 4.8s and

echo time (TE) = 8.7ms. T2 images were acquired using Turbo spin echo sequence using

parameters TR = 12s and TE = 156ms, SENSE factor 2.11 (axial) and 2.54 (sagittal)

with overlapping slices (resolution = 0.8 × 0.8 × 1.6mm). Super resolution methods

(Kuklisova-Murgasova et al. 2012) as well as motion correction methods (Cordero-

Grande et al. 2018) were combined to maximise precision and resolution of images.

Diffusion weighted imaging was acquired with 300 directions with parameters: TR

= 3.8s, TE = 90ms, sensitivity encoding E: 1.2, resolution = 1.5 × 1.5 × 1.5mm,

diffusion gradient encoding: b=0 s/mm (n=20), b=400 s/mm (n=64), b=1000 s/mm

(n=88), b=2600 s/mm (n=128) with interleaved phase encoding.(Hutter et al. 2018)

BOLD Functional MRI scans were acquired during resting state, with parameters TR

= 392ms and TE = 38ms, flip angle = 34, spatial resolution = 2.15mm isotropic with

45 slices. (Ciarrusta et al. 2019)

Structural and Functional connectome construction

Tissue segmentation of T1 and T2 volumes and their parcellation into 90 cortical and

subcortical regions (Shi et al. 2011) was performed using neonatal specific segmen-

tation (Makropoulos et al. 2014) and template (Schuh et al. 2018). Diffusion MRI

was distortion and motion corrected and represented in a compact q-space (Christi-

aens et al. 2019) where a probabilistic 10M streamlines tractography with biologically
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accurate weights (SIFT2) was generated (Smith et al. 2015, Jeurissen et al. 2014).

The Structural connectivity network of each infant was constructed by calculating the

SIFT2-weighted sum of streamlines connecting each pair of regions. The Functional

connectivity network of each infant was generated by performing partial correlation

between each pair of regions (with the other regions as covariates). For simplicity, only

results at 30% of SC network density are used for this work(Batalle et al. 2017).

2.1.2 Structural and Functional Connectomes

Data from dMRI and fMRI scans are presented as adjacency matrices. An adjacency

matrix is a convenient way to represent a network in a matrix form. A network or

graph G = (X, U) consists of:

1. A finite set X = {x1, x2, .., xn}, whose elements are called nodes. They represent

the fundamental elements of the system, such as people in social networks, or in

our case, brain regions.

2. A subset U of the Cartesian product X × X, the elements of which are called

edges. This represents the connections between certain pairs of nodes. Edges can

be binary (simply showing the existence of a connection) or weighted (showing

the existence and strength of connection). Edges can also be in a directed (e.g.

node A is connected to node B, but node B is not connected to node A) or

undirected form.

A wide variety of information and analysis can be performed on graphs/networks

for many different purposes and in many different contexts. Here, we will mainly be

focusing on connections weights between brain regions. This is why the adjacency

matrix, which clearly shows the existence of connections, their weights and directions,
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is the most convenient way to represent the information for our purpose. The figure

below 2.2 simply shows how an adjacency matrix is built.

Figure 2.2: From Network to Adjacency matrix (Graph theory: adjacency matrices

2016)

The structural connectivity matrix aims to show the strength of the anatomical

connections between different brain regions. It is hence represented by a weighted

adjacency matrix. The functional connectivity matrix aims to show regional interaction

through activation correlations. As the correlations vary between -1 and 1, it is also

represented by a weighted adjacency matrix. Although actual brain connections are

directed, the current imaging technologies do not allow to precisely identify connection

directions; we thus consider the connection strengths to be the same in both directions.

The adjacency matrix for structural connectome and functional connectome are hence

presented as an undirected graphs, which yields to symmetric adjacency matrices.
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Figure 2.3: Typical Structural and Functional connectivity adjacency matrices

Both the structural and functional connectivity matrices which are used in this

project are built around 90 different nodes, representing various brain regions. The

figure below shows the name of each and location of the 90 brain regions.

Figure 2.4: Numbered and labeled brain regions used in this project

2.1.3 Neurodevelopmental Assessment

Cognitive evaluation was done for 285 infants at age 18 months using the Bayley Scale

of Infant Toddler Development, third edition (Bayley III) (Albers & Grieve 2007).

Bayley III is a revision of the frequently used Bayley scale, which was originally devel-

oped by psychologist Nancy Bayley. It is today the most widely used developmental
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assessment tool for infants in the world. It allows assessment of developmental status

for children aged 1-42 months. The Bayley III has three main subtests: Cognitive

scale (mainly focusing on attention to surrounding actions), Language scale (testing

for understanding and expression of Language) and Motor scale (assessing motor skills

such as walking, climbing, grasping etc. . . ). The three subsets scores were available for

all 285 infants. Assessment of Bayley III usually takes 45-60 minutes and is done by

an experimented psychologist with the presence of a parent or caregiver (known to the

infant). The Bayley raw scores were converted into a scaled score where the median

score was 100 and the standard deviation was 15. The following figure presents the

distribution of the three different assessments for all 285 babies.

Figure 2.5: Motor, cognitive and language Bayley Score distribution for dHCP data

set

2.2 Deep Learning Software and basic methods

2.2.1 Computational tools used

For this project, various computational tools have been used. All Deep Learning algo-

rithms and data pre-processing were implemented using Python 3.6. Python is a high

level, interpreted, general purpose programming language created in 1991. Python is
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widely used for scientific programming due to the third-party library Numpy, which

supports large multi-dimensional arrays, matrices and tensors operations with high

efficiency. Today, Python is extremely popular within the Machine Learning (ML)

community due the availability of various libraries that make implementation of ML

algorithms extremely convenient. For this project, the Deep Learning Framework Keras

(Keras: The Python Deep Learning library n.d.) has been used for implementation of

all Deep Learning algorithms. Keras is a high-level Application Programming Interface

(API) used for implementation of Neural Networks.

2.2.2 Deep Learning Methods

he vast majority of deep learning algorithms are implemented are Neural Networks

(NN). Many variations of Neural Networks have emerged as suited to different data

and different tasks. For example, convolutional neural networks are state of the art for

semantic segmentation of images, whereas recurrent neural networks are best suited to

time series data. We will mainly be using the less specialised, but still powerful, Dense

Fully-Connected Neural Network (DNN).

Figure 2.6: Basic Fully connected Neural Network Architecture
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A DNN has, as with all NNs, a sequence of neurons arranged into layers. A neuron

is a biologically inspired element, which - like an actual neuron - is connected to other

neurons in a weighted manner. The key component of a DNN is full connectivity of

the neurons of neighbouring layers - every neuron in one is connected to every other

neuron in the next layer (see figure 2.6). This fully connectedness means that the DNN

is powerful and versatile, but with the drawback of a large number of parameters to

be learned. Each neuron in each layer thus carries a certain weight, which is updated

at each iteration (or epochs) upon training through back-propagation (Hinton et al.

1986). The goal of ”training” is to find the optimal mathematical configuration of

weights to turn the input features into the desired output. Three main type of layers

are needed for this type of Neural Network: an output layer which carries the desired

solution, an input layer which carries all the available features to fit for the desired

solution, and a number of hidden layers which are in between the input and output

layer. Each layer is usually followed by an activation layer, which aims at converting

an input signal from a node to an output signal with a specific non linear function.

Figure 2.7: Activation function principle

As the activation functions are nonlinear, they introduce non linearity to the model

(without them, Neural Networks would simply be linear regressions). There exist many
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different types of Activation functions which are used in various contexts, such as Sign

function, ReLu, Heaviside function, softmax etc...

For this project, we will mainly use the activation function Rectified Linear Unit

(ReLU) (eq 2.1) for regression and classification tasks. The function returns 0 if it

receives any negative input, but for any positive value x it returns that value back.

Although very simple, it allows the model to account for non-linearities. It tends

to perform very well on a wide variety of tasks. Another activation function was

systematically used for classification task on the last layer: softmax function. Softmax

(eq. 2.2) forces the outputs to sum to 1 so that they represent probability distribution

of each classes. It indeed applies standard exponential function to each element of input

vector zi and normalize these values by dividing by the sum of all these exponential

(thereby ensuring that the sum of all component of output vector is 1). The formulas

and graphs for these two activations functions are shown below:

ReLu(z) =


0 if z <0

z if z ≥ 0

(2.1)

softmax(z) =
ezi∑
i e

zi
(2.2)

At each training iteration, the output of the NN is evaluated against some ”true”

value according to a predefined loss function. This is crucial, as it allows the weights

to be adjusted by back propagation by minimizing the loss score. There exist many

different loss functions, all are useful in specific contexts. For regression tasks, mean

square error (MSE) is most commonly used. It simply consists in the square of the
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difference between true and predict output (eq. 2.3). Minimizing the MSE is equivalent

to minimizing the difference between true and predicted output. For classification

tasks, where probabilities are between 0 and 1, a commonly used loss function is the

cross entropy function (eq.2.4). The categorical cross entropy calculates for class 1 to

C the product of ground truth ti (correct class for given sample) and the logarithm

of predicted class probability f(si). The objective is to minimize the entropy, thus

minimizing the error. The closer f(si) is from ti, the lower the entropy will be.

MSE =
1

n

n∑
i=1

(yi − ỹi) (2.3)

CE = −
C∑
i

tilog(f(s)i)) (2.4)

All Deep Learning algorithms need training data that will be used to fit the model.

The model is hence learning its parameters from this data. Testing data is also neces-

sary to produce an unbiased evaluation of the final mode (fit on training set) and to

verify that the model generalized well from training and did not over fit. Over fitting

is a common problem in Deep Learning where the a model is too closely fitted to a

limited set of data points (training data). To prevent over fitting, a commonly used

method is to use a third sub sample from the data, called validation data, which is

held back from training but is used to test the model while it is being trained. When

plotting training against validation accuracy, it is possible to spot when the model

starts over fitting. As shown in the 2.8, the model starts over fitting when the training

accuracy is improving, but the validation accuracy is getting worse. This means that

the model is too closely fitted to the training data.
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Figure 2.8: Validation and training loss per epochs - visualizing over fitting

To obtain the best possible performance from a model, there are a number of

parameters that can be modified to best suit the task. One key element in deep

learning is to process the input and output data in a way where the algorithm will

be able to quickly see patterns. For example, it is always more difficult for Neural

Network to deal with large numbers, this is why it is common practice to normalize

all input and output features between 0 and 1. Another important element in building

a well performing Neural Network is its architecture – the number of hidden layers

and neuron per layer is important. For example, deeper (more hidden layers) Neural

Networks reach higher level of abstractions, which is a useful for complex task but

maybe counterproductive in simpler tasks (Poggio et al. 2017). The number of neurons

per layer also has great importance as it increases or decreases the number of parameters

(weights) to tune during training – a high number of parameters are difficult to tune

with small data sets. There is no exact rule as to how to precisely choose the Neural

Network architecture, choice is made by testing. Other parameters such as the learning

rate are also important for performance of the Neural Network. The learning rate is

the step size in the updating the weights during back propagation (which is essentially

a gradient descent). For this project, learning rates are always chosen through grid

search.
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Figure 2.9: Big Learning rate vs small learning rate

There are many additional methods that allow to improve the performance of im-

plemented Neural Networks, such as Dropout (Srivastava et al. 2014) which is a tool

that prevents over fitting. Dropout consists in randomly dropping units (neurons)

along with their connections on a given layer. This prevents neurons from co-adapting

too much. Batch Normalization (Ioffe & Szegedy 2015) is another popular method

which consists in normalizing the input layer by adjusting the activations. Both these

additional methods have been used in building the various models to improve perfor-

mance.

2.3 Section 1: Age of infants from Structural Con-

nectivity: Towards showing Delay in Preterm

Brain Networks

For this section, we implement various Deep Learning algorithms to predict for gesta-

tional age at birth (GA) of the infant or post menstrual age at scan (PMA) of infant

from structural and functional connectivity. The main objective in doing so is to un-

derstand the various developmental process in brain connectivity, and to show that

significant differences in brain connectivity can be identified.
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2.3.1 Task 1: Predicting PMA from structural connectome

The first attempted task consists in predicting PMA from structural connectome using

a Neural Network. Contrary to BrainNet CNN (Kawahara et al. 2017), which predicts

PMA from structural connectivity using convolutional Neural Networks (reaching MAE

of 2.17 weeks), we propose a dense fully connected Neural Network. Indeed, Convo-

lutional Neural Networks (LeCun et al. 1998) are particularly useful for data known

to have local correlation, for example in images where objects to be segmented are,

by their very nature, locally confined into regions. Since the adjacency matrices are

not actually reflective of brain region locality, we choose to instead use DNNs in our

investigation. Before building the Neural Network, pre-processing the input features

– the Structural and Functional connectivity adjacency matrices - is necessary. As

mentioned in section 2.1.2, the adjacency matrices are symmetric, meaning that all

the information is repeated twice – only the lower triangle will thus be considered (see

figure below). The lower triangle is then extracted and reshaped into a 1D vector of

dimension 4005, and is finally normalized between 0 and 1.

Figure 2.10: Processing of structural connectivity matrix

The architecture used for task 1 is presented in the above figure 2.10 . It con-

sists of one input layer with the normalized vectorized structural connectome (4005
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features), with 3 hidden layers, 4 activation layers with ReLU function, one dropout

layer dropping 40% of connections and one output layer with one node, corresponding

to the PMA associated with the structural connectome. The loss function used to ad-

just the weights is Mean Squared Error (MSE).Various other architectures, activation

functions, dropout rates and loss function have been tried, this one performing best of

all. The learning rate, chosen through grid search in increments of 0.005 from 0.08 to

0.0001, that reported highest accuracy was 0.004.

Figure 2.11: Architecture of Neural Network for prediction of PMA

As BrainNetCNN reported results for a preterm trained and tested model, we first

implement our model on preterm infants only (training, testing and validation set

preterm infants). We are thus considering the complete preterm cohort of 111 infants.

Training was done on 70% of the preterm infants, testing on 20% and validation on

10%.

We also implement the model with the full term and preterm data set. The 425

structural connectomes available for training were separated into a training (70%), test-

ing (15%) and validation (15%) subsamples. Training was thus done on the training

data and was at each iteration evaluated with the validation tested. Reported perfor-

mance of the model was evaluated with the testing data set. The train/test/validation

splitting was done so that each sub sample had an equal proportion of term babies
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(GA>37w), preterm babies (32w>GA >37w), and very preterm babies (GA<32w).

Training was done through 80 epochs.

2.3.2 Task 2: Predicting GA from structural connectome

The second task consisted in prediction age at birth (GA) using Neural Networks from

Structural connectome. Similarly, to Task 1, this was done using a DNN. The pre-

processing of structural connectome was also done similarly to Task 1, however, we

add to the input features the PMA. As shown in task 1, age at scan has a significant

impact on the structural connectome, so adding it to the input feature to predict for age

at birth strongly improves the performance. The PMA is normalized between 0 and 1

to be on the same scale as the features of the structural connectome. The architecture

chosen for the Neural Network is presented in the figure below. It consists of one input

layer with normalized vectorized structural connectome, plus the normalized PMA

(4006 features), 4 hidden layers, 4 activation layers (using ReLU), one dropout layer

(fraction = 0.5), 4 batch normalization layers and one output layer with one node

corresponding to GA. As in task 1, the optimal learning rate was found through grid

search: 0.001. Chosen loss function is MSE. The train/test/validation splitting was

also done so that each sub sample had an equal proportion of term, preterm and very

preterm babies. We use 70% for training, 15% for validation and 15% for testing.

Training was done through 120 epochs.
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Figure 2.12: Architecture of Neural Network for prediction of GA

2.3.3 Task 3: Showing connectivity delay in structural con-

nectome of preterm infants

The last task of this session consisted in explicitly showing a developmental delay in

preterm babies compared to term babies after birth. A DNN is trained on term infants

only to predict PMA from structural connectome (training and validation data were

term babies). We test the model on both term and preterm babies. We hypothesized

that upon testing, a significant difference would be noted between term and preterm

infants, meaning that term infants develop differently than preterm babies. We first

separate term babies from preterm babies. We only consider infants scanned after 37

weeks (this is to ensure that every studied infant has had 37 weeks of life); as a conse-

quence, we have fewer infants (391 instead of 425). We also do a train/test/validation

split on term babies only (70%, 20%, 10%). The model is then trained and validated

with the previously defined training and validation data. It is tested separately on the

testing sub sample of term babies, as well and on preterm babies. A linear regression

between actual PMA and predicted PMA is executed on both term and preterm test-

ing. The architecture and chosen parameters of the Neural Network is the same as in

task 1.
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2.4 Section 2: Cognitive score prediction from Struc-

tural Connectivity

For this section, we propose to fully implement the two-step method proposed in (Gi-

rault et al. 2019) with dHCP data. Two differences should be noted before imple-

menting this method: they use a 78x78 connectome, which is different from the 90x90

connectome acquired within the dHCP. Also, the cognitive score used is based on Mo-

tor, Visual and Language assessment from Mullen test, which are combined into an

Early Learning Composite (ELC). The cognitive score used by the dHCP is based on

Bayley III, which is different from Mullen. We implement the method using Motor

and Cognitive assessment as they show higher reliability than language assessment

(Ranjitkar et al. 2018). Computing an average of the three scores as they did is not

interesting in Bayley as the three score are not so highly correlated with each other -

this would thus introduce considerable noise.

Replicating the methods presented in the paper as precisely as possible, we proceed

as follows: A classification Neural Network is first built to fit for above or below median

(AM or BM) cognitive score from structural connectome. The model is only trained

on term infants. As done in section 1, only the lower triangle of the structural con-

nectome is considered, which is then normalized and vectorized. The Neural network

architecture we implement is very similar to the paper, and is thus built with one input

layer, five hidden layers, five activation layers, three Dropout layers and one output

layer with 2 neurons (see figure 2.13 for full model description). The last activation

layer and the loss function are respectively softmax and cross entropy loss function.

One output neuron outputs the above median (AM) probability and the other one

outputs the below median (BM) probability. For instance, for a given connectome, the

AM node could output probability 91%, the BM node would then output 9% (thus

35



summing to 1). The same activation function, dropout rates, learning rates and loss

functions were used in our implementation

Figure 2.13: Classification Neural Network as implemented in (Girault et al. 2019)

The only difference between the architecture used in the paper and our implemen-

tation is that the input layer we implement is of size 4005 instead of 3003. This is

due to the difference in connectome - the connectome used in (Girault et al) is of size

78x78 which yields to 3003 features whereas our connectome is 90*90 which yields to

4005 features. This Neural network is only trained on term babies. Training is done

with K-fold cross validation (using 10 folds). K-fold cross validation is a widely used

method in case of small training/testing data size. It consists in partitioning a sample

of data into two separate subsets: one for training (80%) and one for testing (20%);

this partitioning is done K times. We thus train and test 10 independant models on

10 different train/test split. For each K folds, the model was tested as follows: if for a

given connectivity feature vector, the output response of the Neural Network classifica-

tion was AM = 0.35 and BM = 0.65 then the infant is classified as BM. The model was

thus trained and tested 10 different times, and the reported final accuracy of model is

calculated by taking the average accuracy of all K models. The paper also proposes to

test the term trained model on preterm babies, for which a voting system from the 10

different models is used – if 5 (or more) models out of the 10 models classify a given

sample as AM, the infant is classified as AM (and vice versa).
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The second task consists in using the classification probabilities generated from the

Neural Network to perform a linear regression with the actual cognitive score. The

classification probabilities used are averaged out from each of the 10 folds for term

infants. For preterm infant, the classification probabilities are generated by averaging

the output of each of the 10 models (similar to the voting system). Based on the

output probabilities, the infants are separated into two distinct groups: AM classified

and BM classified infants. For each group, we normalize the probabilities between 0

and 1 and correlate these probabilities with corresponding true cognitive score (linear

regression). This was done separately for term and preterm infants.

2.5 Section 3: Neural network model interpreta-

tion

In this section, we attempt to gain insight into the way Neural Networks manage to

differentiate term and preterm babies – this is trying to understand which connections

and brain regions are allowing this differentiation. As interpreting regression is much

more challenging, we propose to implement a simple classification DNN to classify

between term and preterm babies from structural connectome, which will then be

interpreted using Layer wise Relevance Propagation(LRP).

Pre-processing the structural connectome is done as in section 1 and 2. The ar-

chitecture of the DNN consists in one input layer, 4 hidden layers, 1 dropout layer

(fraction = 0.1), 5 activation layers and one output layer with two nodes (one for term

probability and one for preterm probability). Optimal learning rate was 0.005 (found

through grid search); loss function used is cross entropy (Janocha & Czarnecki 2017).

As in section 1, the train/test/validation splitting was done so that each sub sample

had an equal proportion of term, preterm and very preterm babies. We use all avail-
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able data (425 infants). Splitting is done with 70% training, 15% validation and 15%

testing. Training was done through 90 epochs.

The classification DNN being built, LRP (Bach et al. 2015) algorithm was imple-

mented to perform interpretation of the classification. LRP is a backward propagation

technique that assigns a relevance score to each feature by iteratively propagating back-

wards from each layer’s output to its predecessor until the input layer is reached (See

figure 2.14). This is done for each testing sample - it hence assigns different relevance

for each sample. The LRP algorithm outputs for each sample the relevance of each

feature. The relevance is either positive (positive contribution) or negative (negative

contribution). In this section, the LRP algorithm used is implemented as in (Montavon

et al. 2018).

Figure 2.14: Diagram of the LRP procedure, adapted from (Montavon et al. 2018)

We apply the LRP to each testing sample, we thus obtain the relevance of all 4005

features for each testing sample. We then separate the term and preterm classified

infants into two separate groups. On both groups, we compute the average feature
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relevance on each feature. We thus obtain the 4005 feature. A 90x90 matrix can

thus be rebuilt for eaching testing sample, where each edge’s weight corresponds to its

relevance. The full process is clearly explained in the figure 2.15.

Figure 2.15: Relevance map construction process

We thus obtain a different relevance map for term infants and preterm infants.

From then, we can infer the edges that are most characteristic of term infants and of

preterm infants. Indeed, the most positively activated features in the term relevance

map will be the most characteristic of term infants, and vice versa. This would allow

to identify edges that are most important to correctly differentiate between term and

preterm infants.
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Chapter 3

Results

3.1 Section 1: Age of infants from Structural Con-

nectivity: Towards showing Delay in Preterm

Brain Networks

3.1.1 Task 1: Predicting PMA from structural connectome

A fully connected Neural Network was trained on preterm infants only to fit for PMA

from structural connectome. We reach a mean absolute error of 0.84 weeks on predic-

tion. The Pearson correlation between true and predicted reaches r=0.90 and p<0.001.

Figure 3.1 summarizes all information for this model. Figure ?? shows the evolution

of the loss as per training iteration (epoch), as well as a plot of true PMA against

predicted PMA.

Figure 3.1: Task 1-a Model summary
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Figure 3.2: Fitting for PMA results (preterm trained model, preterm testing only)

Another fully connected Neural Network was trained, but on the complete 425 data

set (term and preterm combined). Using the same architecture and parameters as the

previously trained model, we obtain a mean absolute error of 0.7 weeks on the test set.

Figure 3.4 shows the evolution of the loss as per training iteration (epoch), as well as

a plot of true PMA against predicted PMA. The Pearson correlation between true and

predicted reaches r=0.93 and p<0.001. Figure 3.5 summarizes all information for this

model.

Figure 3.3: Task 1-b Model summary
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Figure 3.4: Fitting for PMA results (term + preterm testing)

3.1.2 Task 2: Predicting GA from structural connectome

For this task, we train a fully connected Neural Network to predict for GA from

structural connectome and PMA. Figure 3.6 shows the evolution of the loss as per

training iteration (epoch), as well as a plot of true GA against predicted GA. We reach

a mean absolute error of 1.1 weeks upon testing. The Pearson correlation between true

and predicted reaches r=0.89 and p<0.001. Figure ?? summarizes all information for

this model.

Figure 3.5: Task 2 Model summary
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Figure 3.6: Fitting for GA

3.1.3 Task 3: Showing connectivity delay of structural con-

nectome in preterm infants

On this task, we train a model only on term infants to predict PMA from structural

connectome. We test the model on a term test set as well as on a preterm testing set.

Figure 3.9 shows the correlations between predicted and actual PMA upon testing on

the term testing set and the preterm testing set. We perform a linear regression on

both figures. It can be seen that the linear regression is very close to y=x axis on term

babies, whereas it is much less so on preterm babies. The average residuals (Predicted

score - actual score) on term testing is +0.3w. The average residuals preterm testing

is -0.71 weeks. For clarity, figures 3.7 and 3.8 summarize the models.
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Figure 3.7: Task 3 Model summary - term fitting

Figure 3.8: Task 3 Model summary - pre term fitting

(a) Term fitting (b) Preterm fitting

Figure 3.9: PMA Fitting for Term trained model. Testing on term (left) and preterm

(right)
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3.2 Section 2: Cognitive score prediction from Struc-

tural Connectivity

In this section, we replicate the methods of (Girault et al. 2019) to try to fit for actual

cognitive score from structural connectome. As in (Girault et al. 2019), we implement

a classification Neural Network to predict for neurodevelopmental score. The figures

and results shown below are for prediction of Cognitive Bayley III score.

The classification Neural Network is trained using a K fold cross validation. Figure

3.10 shows a typical training accuracy per epoch during training for one of the folds.

Figure 3.10: Typical accuracy per epoch for fold

Training accuracy is stable at about 90% from epoch 100; this is the case for all

training folds. The final accuracy reached - which corresponds to the average accuracy

on testing set of all 10 folds - We reach an average accuracy of 58%. The huge

gap between training accuracy and testing accuracy is mostly due to overfitting. The

confusion matrices upon testing on each folds are shown below.
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Figure 3.11: Confusion Matrix for classification of term babies for each testing fold

We follow (Girault et al. 2019) method and apply a voting system on each preterm

infant structural data. We reach an accuracy of 55% on classification. The following

confusion matrix is obtained from applying the voting system on preterm infants.
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Figure 3.12: Confusion Matrix for voting system on each preterm infant

Based on the probabilities, we first separate the infants into two distinct groups:

AM classified and BM classified infants. For each group, we normalize the probabilities

between 0 and 1 and correlate these probabilities with corresponding true cognitive

score (linear regression). Results for term and preterm infants are shown in the figures

below. For term infants, Pearson correlation for above term infants has r = 0.05 with

p = 0.12; Pearson correlation for below median infants has r = 0.02 and p = 0.08 We

thus have no correlation at all between the classification probabilities and the actual

cognitive scores.

Figure 3.13: Term Probabilities correlated with actual score
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Figure 3.14: Term Probabilities correlated with actual score

In comparison, the results obtained in (Girault et al. 2019) for the classification were

an average accuracy 89% on term infants, and 83% on preterm infants. For the pre-

diction of actual cognitive score of term infants, they obtained a correlation of r=0.98

and p<.001 on below median group and a correlation of r=0.92 and p<.001 on above

median group. For the prediction of actual cognitive score of preterm infants, they

obtained a correlation of r=0.94 and p<.001 on below median group and a correlation

of r=0.92 and p<.001 on above median group.

3.3 Section 3: Neural network model interpreta-

tion

We first build a Neural Network classifier to classify term and preterm infants from

structural connectome. We reach accuracy of 90% on classification upon testing - all

the classified infants have GA between 35 and 38 weeks (they are close to threshold

value of 37 weeks). The confusion matrix shown below for the classification is shown
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below (fig 3.15).

Figure 3.15: Confusion Matrix for classifier

As described in the methods section, we compute the LRP on term and preterm

classified infants and obtain the average term and preterm relevance maps. The fig-

ure below (fig 3.16) shows these two relevance maps. Note that the most positively

activated edges in the term relevance map are the most negatively activated edges on

the preterm relevance map, and vice versa. This is coherent with the MNIST data set

example given in the introduction.
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Figure 3.16: Activation maps for Term and Preterm classes

We identify the 5 most positively activated connections for both term and preterm

classes - they are shown in the figure below (fig. 3.17) Full table with all 50 connections

with corresponding relevance is given in the Additional Tables section (see fig. A.1,

A.2)
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Figure 3.17: Table presenting the most relevant connections for term and preterm

classes

From the 50 most positively activated connections shown in fig.A.1 and A.2 we

count the number of apparition (frequency) of each brain region. For instance, in the

50 most relevant connections for term infants, the parietal superior lobe is comprised

in 5 different connections. We thus assign it a frequency of 5. Again, this is done for

term and preterm classes. Names and frequency of apparition of the 8 most frequent

regions are presented in the table below (fig. 3.18).

51



Figure 3.18: Table presenting the most frequently called brain regions for term and

preterm classes

Finally, we take the 50 most important (positive) edges for term and preterm classes

and visualize them with the BrainNetView toolbox (Xia et al. 2013). The two follow-

ing figures (fig. 3.19, 3.20) show the visualisations. For visualization purposes, the

relevances are logarithmically scaled to obtain a uniform color distribution.
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Figure 3.19: Brain visualisation of activated nodes/edges on term infants. Generated

with BrainNetViewer (NITRC: BrainNet Viewer: Tool/Resource Info n.d., Xia et al.

2013)
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Figure 3.20: Brain visualisation of activated nodes/edges on Preterm infants.

Generated with BrainNetViewer (NITRC: BrainNet Viewer: Tool/Resource Info n.d.,

Xia et al. 2013)
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Chapter 4

Discussion

4.1 Analysis

4.1.1 Section 1: Age of infants from Structural Connectivity:

Towards showing Delay in Preterm Brain Networks

In this section, we have successfully predicted both age at scan and age at birth form

structural connectome with high accuracy. This proves that brain connectivity under-

goes significant changes during perinatal period. It is particularly important to note

that successful prediction of age at birth confirms previous findings which suggest that

gestation time has a significant impact on later neurodevelopment. The DNN imple-

mented in task 1 was able to outperform (Kawahara et al. 2017)’s BrainNet CNN.

Indeed, they achieved prediction of PMA with MAE of 2.29 weeks and a correlation of

0.85 (predicted vs actual) on prediction of preterm infants. In comparison, our DNN

reaches a MAE of 0.84 weeks and correlation of 0.90 on prediction for preterm infants

only - a significant improvement from BrainNetCNN. This is with a similar data set

size (115 preterm infants in Kawahara et al. and 111 preterm infants with dHCP data

used). We also predict PMA on term and preterm infants combined, reaching MAE of

0.7 weeks with correlation of 0.93.

In Task 3, we hypothesized that training a PMA regressor DNN on term infants

would lead to significant differences when tested on term and preterm infants. This
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was indeed confirmed: prediction upon testing on term infants reached a average resid-

uals (Predict PMA - true PMA) of +0.2 weeks; testing on preterm infants reached

mean average error of -0.7 weeks. As the average predictions residuals for preterm is

negative, we can conclude that preterm infants have notable developmental delay in

brain connectivity compared to term infants.

4.1.2 Section 2: Cognitive score prediction from Structural

Connectivity

In this section, we were not able to replicate the findings of (Girault et al. 2019) with

the dHCP data set, despite precise implementation of their method. This might be

the case because of differences in data (both raw and processing methods), as well as

potential issues in the proposed methods.

First, Girault et al.’s cognitive assessment is done with Mullen test, which is dif-

ferent from Bayley III test (although both tests have similar internal consistencies).

Also, the cognitive assessment they use was assessed at age 24 months, whereas cogni-

tive assessment for dHCP infants was assessed at age 18 months. Another important

difference is the connectome extraction method: Girault et al used a probabilistic trac-

tography (Puechmaille et al. 2017) to determine the diffusion connectome which yielded

to a 78x78 structural connectome. In comparison, the dHCP constructs the diffusion

connectome by calculating the SIFT2-weighted sum of streamlines connecting each pair

of regions (Smith et al. 2015), which yields to a 90x90 structural connectome. These

factors could have had a significant impact on our inability to replicate the results.

Regarding their results, a surprising fact is that they reach a higher accuracy on

prediction of actual neurodevelopmental score than the consistency of the test itself.

Indeed, in their method section they report an internal consistency of 91% (test/retest
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error) and reliability of 84% for the Mullen Scale at this age. Their reported aver-

age error on prediction is of 3.45 points (3.5% of relative error) for term and of 4.47

point (4.5% of relative error) for preterm infants, which is more precise than the test

neurodevelopmental test itself.

With regards to the method used, the supplemental material provided in their

publication shows the following graph which presents the evolution of accuracy and

loss as per epochs for a given fold.

Figure 4.1: Evolution of loss function and accuracy per epochs as implemented in

(Girault et al. 2019)

The high number of epochs (1500) is extremely prone to overfitting for such a low

data size (115 infants). To illustrate this, we implement the same classification DNN

architecutre and parameters with dHCP data set, but this time with an additional

validation data set. Note that we use a bigger data set, and are thus less prone

to overfitting. The following graph shows that, although we reach similar training

accuracy and loss, we notice from validation accuracy and loss that the model starts

to over fit as soon as the 70th epoch.
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Figure 4.2: Training vs validation accuracy and loss - Overfitting from the 70th epoch

The very high number of parameters used in their DNN architecture (3000 nodes

on first hidden layer, 1000 nodes on 2nd hidden layer, 1000 nodes on 3rd hidden layer,

500 nodes on 4th hidden layer, and 100 nodes on 5th hidden layer) is also very prone

to overfitting for such a small data size.

Finally, they justify the two step approach used by a difficulty to obtain satisfactory

results when directly attempting regression of actual cognitive score from structural

connectome using a DNN (with very similar architecture to the proposed classification

DNN): ”the single neural network design consistently predicts the ELC 2-year score

as either 88.01 (+/- 1.02) or 124.07 (+/- 1.03). This result strongly suggests that

predicting one continuous measure using high dimension connectivity feature vectors is

too complex, and as a result, the single neural network design is overfit”. In this case,

88 and 125 correspond to the median score respectively for BM and AM cohort. A

DNN consistently outputting the median of the training data set can be due to many

different factors such as an inappropriate loss function (in this case, they use MSE), a

number of parameters so high that learning cannot converge - this yields in the network

being unable to produce any kind of relevant representation. To minimize the error,
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the network will thus constantly output the median of the data set. We also implement

a regression DNN with same architecture and obtain similar results: output stuck at

114 (+/- 4) for AM model and 87 (+/- 3.5) for BM cohort.

They implement a similar architecture in the classification than the mentioned

regression task. The two step approach used the classification output probability to

perform a linear regression with the actual cognitive score. This signifies that, for

instance, if an infant is classified AM with high probability, the infant should have a

high neurodevelopmental score (and vice versa). This suggests that the classification

is not only able to correctly classify between AM and BM, but also that the output

probability is a significant indicator of the actual score. It is very difficult to believe

that using the same architecture and data, the classification DNN outputs probabilities

strongly correlated with actual score whereas the regression neural network is unable

to find any relevant representation.

It is also expected that variations in socio economic status and education of the

family (Raizada & Kishiyama 2010) would be responsible for important variation of

the cognitive scores at age 24 months.

4.1.3 Section 3: Neural network model interpretation

In this section, we first manage to classify correctly between term and preterm in-

fants with high accuracy (90%) from structural connectome. Applying the LRP to

the model, we are able to identify the connections that were on average most rele-

vant to classifying a given connectome as term or preterm, as well as the brain regions

that were most frequently part of these connections. The results are in accordance with

previously published work attempting to identify (with statistical analysis) specific con-

nections and regions that are significantly affected by gestational age at birth (Batalle

et al. 2017). We indeed identify connections such as Parietal Superior-Pecuneus Left;
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Putamen-Thalamus; intra occipital connections. These were also identified in Batalle

et al. as being importantly affected by gestational age. Batalle et al. observed that

regions such as the temporal, frontal and parietal cortex are showing faster increases in

relative weighted connectivity, suggesting earlier development. The LRP method fre-

quently identified these regions as being relevant to classifying term infants. This could

suggest that the development of these regions is important throughout the whole ges-

tational period, and that term infants have significantly stronger connections weights

within these regions. It is also noted in Batalle et al. that regions such as cingulate

gyrus and caudate nucleus matured more slowly. These regions were frequently iden-

tified by the LRP method as highly relevant for preterm classified infants. This could

suggest that preterm infants are identifiable due to lower connection weights on these

regions than term infants. Also, the thalamus is the only brain region appearing to

be relevant for both term and preterm classes. This is also coherent with previous

findings which showed Thalamocortical connections are essential for brain function, es-

tablished early in development and significantly impaired following preterm birth (Ball

et al. 2015). Finally, it is interesting to note that the connection with highest relevance

between the Precentral and the Olfactory lobes (relevance 0.2433) was never identified

(to our knowledge) in the literature. We do not know what this connection represent.

4.2 Limitations

Several limitations are to be noted for the work produced in this project. Firstly, al-

though the dHCP currently holds the largest neonate brain connectivity data set in the

world, it remains relatively small for reliable Deep Learning applications. Various data

augmentation methods could be attempted to improve the performance and robust-

ness of the networks, but this remains very challenging for such complex data set as

60



connectomes. Also, the small size of the data set does not guarantee the possibility to

generalize the findings over larger populations. Even though we implement the Layer

wise Relevance Propagation method which gives us an idea of how the Neural Network

is able to correctly classify term and preterm infants, we are not able to replicate these

interpretations on regression tasks, which are much more complex to interpret. The

difficulty to interpret the neurodevelopmental outcomes is preventing us to reliably use

models for real diagnosis.

4.3 Conclusion

In this study, Deep Learning has proven to be a successful method that achieved high

accuracy on prediction of various neurodevelopmental outcomes from data as complex

as brain connectivity. Indeed, Deep Learning appears to be a very promising alternative

to traditional statistical analysis, as it is able not only able to replicate statistical

findings as shown in section 3 with the identifications of relevant brain regions and

connections, but also manages to achieve great performance on complex tasks such as

prediction of gestational age at birth and post menstrual age at scan.

61



Chapter 5

Future Work

A major difficulty encountered in this project was to replicate the results with Func-

tional Connectivity. Indeed, it is much less straightforward to link Functional Con-

nectivity to the various neurodevelopmental scores we’ve worked with. This is most

likely due to the high level of noise in the data, as well as the high temporal vari-

ability. Furthermore, Functional connectivity is much more dependant on locality and

inter-regional connections; Deep Fully Connected Neural Networks are thus unlikely

to perform well for prediction of neurodevelopmental scores as they only consider edge

weight. Applying the recent discoveries in Deep Learning for Graphs (Hamilton et al.

2017, Grover & Leskovec 2016) to connectivity data as in (Rosenthal et al. 2018) would

be very interesting. Indeed, these novel methods are designed to find representations of

graph that preserve neighbooring. This would allow to emphasize information charac-

terizing relation between brain regions, and can be used to infer links which are lacking

from a simple adjacency matrix.

As initially planned in the project, a DNN was also implemented to predict func-

tional connectivity from structural connectivity. Although no satisfactory results were

obtained from these attempts with DNNs, we believe that using the previously men-

tioned methods in Deep Learning for Graphs could originate novel conclusions regard-

ing the link between structural and functional connectivity.

Finally, the deep learning interpretation methods only offer a hint of what the

model uses to correctly classify. It would be particularly interesting to understand how
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decision is made for each test sample, rather than just highlighting notable differences

between classes as has been done in this work. This would allow to conclude on specific

brain regions that are abnormally developed or undeveloped for each infant - and thus

allowing according action.
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Appendix A

Additional Tables

Node 1 Node 2 Relevance

2 Precentral R 2002 22 Olfactory R 2502 0.2433

59 Parietal Sup L 6101 67 Precuneus L 6301 0.1692

85 Temporal Mid L 8201 89 Temporal Inf L 8301 0.1254

73 Putamen L 7011 77 Thalamus L 7101 0.1176

50 Occipital Sup R 5102 52 Occipital Mid R 5202 0.0867

3 Frontal Sup L 2101 7 Frontal Mid L 2201 0.0854

2 Precentral R 2002 18 Rolandic Oper R 2332 0.0822

83 Temporal Pole Sup L 8121 87 Temporal Pole Mid L 8211 0.0813

58 Postcentral R 6002 60 Parietal Sup R 6102 0.0797

67 Precuneus L 6301 69 Paracentral Lobule L 6401 0.0654

63 SupraMarginal L 6211 81 Temporal Sup L 8111 0.0649

60 Parietal Sup R 6102 64 SupraMarginal R 6212 0.0629

58 Postcentral R 6002 66 Angular R 6222 0.0595

18 Rolandic Oper R 2332 68 Precuneus R 6302 0.0575

57 Postcentral L 6001 67 Precuneus L 6301 0.0570

70 Paracentral Lobule R 6402 76 Pallidum R 7022 0.0566

59 Parietal Sup L 6101 65 Angular L 6221 0.0562

72 Caudate R 7002 76 Pallidum R 7022 0.0559

57 Postcentral L 6001 59 Parietal Sup L 6101 0.0550

71



Node 1 Node 2 Relevance

82 Temporal Sup R 8112 86 Temporal Mid R 8202 0.0536

90 Temporal Inf R 8302 16 Frontal Inf Orb R 2322 0.0529

5 Frontal Sup Orb L 2111 9 Frontal Mid Orb L 2211 0.0521

74 Putamen R 7012 76 Pallidum R 7022 0.0518

3 Frontal Sup L 2101 23 Frontal Sup Medial L 2601 0.0483

30 Insula R 3002 31 Cingulum Ant L 4001 0.0482

48 Lingual R 5022 66 Angular R 6222 0.0476

64 SupraMarginal R 6212 84 Temporal Pole Sup R 8122 0.0475

51 Occipital Mid L 5201 65 Angular L 6221 0.0467

8 Frontal Mid R 2202 14 Frontal Inf Tri R 2312 0.0465

3 Frontal Sup L 2101 19 Supp Motor Area L 2401 0.0462

60 Parietal Sup R 6102 62 Parietal Inf R 6202 0.0459

61 Parietal Inf L 6201 63 SupraMarginal L 6211 0.0441

57 Postcentral L 6001 63 SupraMarginal L 6211 0.0421

61 Parietal Inf L 6201 65 Angular L 6221 0.0398

59 Parietal Sup L 6101 61 Parietal Inf L 6201 0.0398

2 Precentral R 2002 6 Frontal Sup Orb R 2112 0.0394

91 Cerebelum L 9001 17 Rolandic Oper L 2331 0.0383

81 Temporal Sup L 8111 83 Temporal Pole Sup L 8121 0.0372

24 Frontal Sup Medial R 2602 26 Frontal Med Orb R 2612 0.0371

90 Temporal Inf R 8302 76 Pallidum R 7022 0.0367

77 Thalamus L 7101 81 Temporal Sup L 8111 0.0365

90 Temporal Inf R 8302 56 Fusiform R 5402 0.0362

85 Temporal Mid L 8201 87 Temporal Pole Mid L 8211 0.0357

48 Lingual R 5022 50 Occipital Sup R 5102 0.0350
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Node 1 Node 2 Relevance

50 Occipital Sup R 5102 54 Occipital Inf R 5302 0.0342

7 Frontal Mid L 2201 31 Cingulum Ant L 4001 0.0337

49 Occipital Sup L 5101 59 Parietal Sup L 6101 0.0335

35 Cingulum Post L 4021 77 Thalamus L 7101 0.0320

49 Occipital Sup L 5101 51 Occipital Mid L 5201 0.0318

12 Frontal Inf Oper R 2302 14 Frontal Inf Tri R 2312 0.0318

Table A.1: 50 most important edges for term

Node 1 Node 2 Relevance

29 Insula L 3001 73 Putamen L 7011 0.0370

71 Caudate L 7001 73 Putamen L 7011 0.0319

71 Caudate L 7001 75 Pallidum L 7021 0.0315

30 Insula R 3002 32 Cingulum Ant R 4002 0.0262

71 Caudate L 7001 77 Thalamus L 7101 0.0260

42 Amygdala R 4202 44 Calcarine R 5002 0.0244

34 Cingulum Mid R 4012 35 Cingulum Post L 4021 0.0232

55 Fusiform L 5401 89 Temporal Inf L 8301 0.0220

33 Cingulum Mid L 4011 67 Precuneus L 6301 0.0198

32 Cingulum Ant R 4002 33 Cingulum Mid L 4011 0.0178

65 Angular L 6221 85 Temporal Mid L 8201 0.0170

42 Amygdala R 4202 46 Cuneus R 5012 0.0170

90 Temporal Inf R 8302 32 Cingulum Ant R 4002 0.0158

32 Cingulum Ant R 4002 35 Cingulum Post L 4021 0.0157

39 ParaHippocampal L 4111 55 Fusiform L 5401 0.0156
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Node 1 Node 2 Relevance

2 Precentral R 2002 32 Cingulum Ant R 4002 0.0156

43 Calcarine L 5001 51 Occipital Mid L 5201 0.0154

76 Pallidum R 7022 77 Thalamus L 7101 0.0148

91 Cerebelum L 9001 7 Frontal Mid L 2201 0.0147

43 Calcarine L 5001 67 Precuneus L 6301 0.0136

70 Paracentral Lobule R 6402 74 Putamen R 7012 0.0134

86 Temporal Mid R 8202 88 Temporal Pole Mid R 8212 0.0134

43 Calcarine L 5001 49 Occipital Sup L 5101 0.0130

90 Temporal Inf R 8302 18 Rolandic Oper R 2332 0.0126

54 Occipital Inf R 5302 88 Temporal Pole Mid R 8212 0.0124

54 Occipital Inf R 5302 86 Temporal Mid R 8202 0.0123

37 Hippocampus L 4101 77 Thalamus L 7101 0.0122

90 Temporal Inf R 8302 2 Precentral R 2002 0.0121

18 Rolandic Oper R 2332 32 Cingulum Ant R 4002 0.0119

91 Cerebelum L 9001 71 Caudate L 7001 0.0119

20 Supp Motor Area R 2402 76 Pallidum R 7022 0.0117

7 Frontal Mid L 2201 13 Frontal Inf Tri L 2311 0.0116

7 Frontal Mid L 2201 33 Cingulum Mid L 4011 0.0113

91 Cerebelum L 9001 11 Frontal Inf Oper L 2301 0.0104

82 Temporal Sup R 8112 88 Temporal Pole Mid R 8212 0.0101

29 Insula L 3001 71 Caudate L 7001 0.0101

46 Cuneus R 5012 54 Occipital Inf R 5302 0.0100

46 Cuneus R 5012 84 Temporal Pole Sup R 8122 0.0096

42 Amygdala R 4202 66 Angular R 6222 0.0095

90 Temporal Inf R 8302 10 Frontal Mid Orb R 2212 0.0092

74



Node 1 Node 2 Relevance

22 Olfactory R 2502 32 Cingulum Ant R 4002 0.0092

22 Olfactory R 2502 30 Insula R 3002 0.0091

6 Frontal Sup Orb R 2112 32 Cingulum Ant R 4002 0.0088

32 Cingulum Ant R 4002 56 Fusiform R 5402 0.0087

25 Frontal Med Orb L 2611 31 Cingulum Ant L 4001 0.0086

39 ParaHippocampal L 4111 87 Temporal Pole Mid L 8211 0.0085

29 Insula L 3001 77 Thalamus L 7101 0.0083

15 Frontal Inf Orb L 2321 29 Insula L 3001 0.0083

54 Occipital Inf R 5302 82 Temporal Sup R 8112 0.0082

21 Olfactory L 2501 77 Thalamus L 7101 0.0080

Table A.2: 50 most important edges for preterm
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